Effect of Dispersed MoO₃ Amount on Catalytic Activity of NiO-ZrO₂ Modified with MoO₃ for Acid Catalysis

손종락*, <u>이성규</u>, 신동철 경북대학교 (jrsohn@knu.ac.kr*)

NiO supported on zirconia modified with $\mathrm{MoO_3}$ for acid catalysis was prepared by drying powdered $\mathrm{Ni(OH)_2}\text{-}\mathrm{Zr(OH)_4}$ with ammonium heptamolybdate aqueous solution, followed by calcining in air at high temperature. The characterization of prepared catalysts was performed using FTIR, Raman, XRD, and DSC. $\mathrm{MoO_3}$ equal to or less than 15 wt% was dispersed on the surface of catalyst as two-dimensional polymolybdate or monomolybdate, while for $\mathrm{MoO_3}$ above 15 wt%, crystalline orthorhombic phase of $\mathrm{MoO_3}$ was formed, showing that the critical dispersion capacity of $\mathrm{MoO_3}$ on the surface of catalyst is 0.18 g/g $\mathrm{NiO-ZrO_2}$ on the basis of XRD analysis. Acidity and catalytic activities for acid catalysis increased with the amount of dispersed $\mathrm{MoO_3}$. The high acid strength and acidity was responsible for the $\mathrm{Mo=O}$ bond nature of the complex formed by the interaction between $\mathrm{MoO_3}$ and $\mathrm{ZrO_2}$. The catalytic activity for acid catalysis was correlated with the acidity of the catalysts measured by the ammonia chemisorption method.