Effect of TiO_2 -ZrO₂ Composition on Catalytic Activity of Supported NiSO₄ for Ethylene Dimerization

손종락*, 이시훈¹, <u>이성규</u> 경북대학교; ¹포항산업과학연구원 (jrsohn@knu.ac.kr*)

A series of catalysts, NiSO₄/TiO₂-ZrO₂ having different TiO₂-ZrO₂ composition, for ethylene dimerization was prepared by the impregnation method using an aqueous solution of nickel sulfate. No diffraction line of nickel sulfate was observed up to 30 wt%, indicating good dispersion of nickel sulfate on the surface of supported NiSO₄ catalysts. The surface area and acidity of TiO₂-ZrO₂ binary metal oxide increased remarkably compared with single metal oxide, TiO₂ or ZrO₂. The binary oxide, TiO₂-ZrO₂ calcined above 600 °C resulted in the formation of crystalline orthorhombic phase of ZrTiO4. Therefore, NiSO4/TiO2-ZrO2 calcined at 500 °C exhibited a maximum catalytic activity, and then the catalytic activity decreased with the calcination temperature. NiSO₄ supported on 50TiO₂-50ZrO₂ (TiO₂/ZrO₂ ratio = 1) among TiO₂-ZrO₂ binary oxides exhibited the highest catalytic activity for ethylene dimerization. The catalytic activities of supported NiSO₄ catalysts were correlated with the acidity of catalysts measured by the ammonia chemisorption method, regardless of the kind of support (TiO₂, ZrO₂, or TiO₂-ZrO₂).