Optimization of CdS/TiO₂ Nano-Bulk Composite (NBC) Photocatalysts for Hydrogen Production from Na₂S/Na₂SO₃ Aqueous Electrolyte Solution under Visible Light ($\lambda \ge 420$ nm)

<u>장점석</u>¹, 지상민², 배상원², 손효창², 홍석준², 이재성^{2,1,*} ¹포항공과대학교 환경공학부; ²포항공과대학교 화학공학과 (jlee@postech.ac.kr^{*})

Nano-bulk composite (NBC) photocatalysts based on bulk CdS were fabricated as precipitation method and sol-gel synthesis. CdS-TiO₂ NBC photocatalyst consisted of bulky CdS with a high crystallinity decorated with nanosized TiO₂ particles. This configuration of the composite photocatalyst exhibited an unprecedented high rate of hydrogen production under visible light irradiation ($\lambda \ge 420$ nm) from water containing sulfide and sulfite as hole scavengers. In this work, we investigated the physicochemical properties of CdS(bulk)/TiO₂ composite photocatalysts and optimized their preparation conditions for the high photocatalytic activity of hydrogen production from water containing Na₂S and Na₂SO₃ as a sacrificial reagents under visible light irradiation.