나노유체 내 이산화탄소 흡수 특성 분석

<u>김운귀</u>, 강현욱, 김성현* 고려대학교 화공생명공학과 (shkim@korea.ac.kr^{*})

CO₂ Absorption in nanofluid

<u>Wun-gwi Kim</u>, Hyun Uk Kang and Sung Hyun Kim* Department of Chemical and Biological Engineering, Korea University (shkim@korea.ac.kr^{*})

<u>서론</u>

나노유체란 수내지 수십 나노미터 크기의 입자가 용매 안에 안정적으로 분산되어있는 유체를 말한다. 1995년 Choi 등은 유체의 혁신적인 열전달 성능 향상을 일으킬 수 있는 물질로서 나노유체를 제안했다.[1] 그 이후 많은 연구자들이 새로운 열교환 매체로서 나 노유체의 가능성에 깊은 관심을 가지고 연구를 진행하고 있다. [2] 그러나 연료전지, MEMS 등의 장치에 나노유체를 사용하기 위해서는 나노유체의 물질전달 특성에 대한 연 구도 많이 요구되고 있다. 이와 관련하여 Ha 등은 액막형 흡수기에서 나노유체를 이용해 암모니아 흡수 성능향상을 보고한 바 있고[3], Jung 등은 기포형 흡수기에서 나노유체를 이용해 암모니아의 흡수 성능 향상을 보고하였다.[4] 본 연구에서는 나노유체에서의 흡수 특성에 대한 유변학적, 메카니즘적 접근을 위해 Manuel 등에 의해 연구된바 있는 CO₂[5] 를 대상물질로 삼아 액막형과 기포형 두 개의 흡수기 에서의 흡수 특성을 분석해보았다.

<u>이론</u>

액막형 흡수기의 동특성은 흡수기의 모멘텀 수지 모델링을 통해 쉽게 알 수 있다. 그 결과로 흡수기에서 흐름의 평균 선속도는 아래의 식에서 구할 수 있다.

$$V_{z,avg} = \frac{\rho g \delta^2}{3\mu} = \frac{w}{W \delta} \quad (w = flow rate, \delta = film thickness) \quad (1)$$

그리고 물질전달 성능의 지표가 될 수 있는 물질전달계수는 아래의 식으로 추정할 수 있다.

N_{A,Z}=k_C(C^{*}_A-C_A) (k_c = mass transfer coefficient, C^{*}_A = Surface concentration) (2)
 CO₂ 흡수에 대한 평형식과 아민과의 반응식은 아래와 같다. 아래의 식을 이용하면
 CO₂ 흡수에 대해서 정량적인 분석이 가능하고 흡수실험 결과를 설명할 수 있는 메카니즘 제시의 바탕이 된다.

$$\mathcal{CO}_2 + H_2 O \xleftarrow{k_1} H_2 \mathcal{CO}_3 \xleftarrow{k_2} H^+ + H \mathcal{CO}_3^-$$
(3)

$$CO_2 + 2RNH_2 \rightarrow RNCO_2^- + R_2NH_3^+$$
⁽⁴⁾

화학공학의 이론과 응용 제12권 제1호 2006년

<u>실험</u>

본 연구에서는 12nm 크기의 나노입자가 안정적으로 분산되어있는 Sigma Aldrich 사의 상용 나노유체인 Ludox를 사용하였다. 그리고 아래의 그림과 같은 두 가지의 흡수기를 사용하여 이산화탄소의 흡수특성을 분석하였다.

나노유체의 흡수성능을 알아보기 위한 장치 모식도는 Figure 1과 같다.

액막형 흡수기는 길이 700mm 너비 180mm의 크기로 제작되어 있으며 연속 흡수 조건 에서 정상상태에서의 유입량과 유출량의 직접유량을 측정할 수 있도록 설계되어있다. 이 장치에서는 나노입자가 첨가된 물과 0.05 mol 아민용액에서 CO₂ 의 흡수성능 실험을 진 행하였다.

기포형 흡수기는 직경 70mm 높이 200mm의 원통형으로 설계되어있으며 액막형 흡수 기와 마찬가지로 유입과 유출의 직접유량을 측정할 수 있게 하였다. 기포형 흡수기는 회 분식 흡수조건이므로 비정상 상태의 흡수가 일어난다. 이의 흡수성능 분석을 위해 CO₂ 포화용액이 될 때까지 흡수를 시키며 시간에 따른 CO₂ 의 흡수 속도 측정을 하였다.

결과 및 토론

액막형 흡수기에서 물과 나노유체에 대한 CO₂ 흡수실험 결과는 Table 1 그리고 Figure 2-(a) 와 같다. 결과에서 볼 수 있듯이 나노입자의 분율이 증가할수록 CO₂ 물질전달 성능 이 감소된다. 이는 나노입자의 차단효과와 유효부피 증가에 따른 흡수용량 감소 때문이 라고 생각된다. 그 결과로 흡수성능이 7% 감소했다. 특히 Figure 2-(a)에서 볼 수 있듯이 아민 용액에 대하여는 더욱 큰 감소현상을 볼 수 있는데 이는 나노입자가 CO₂ 의 물질전 달을 방해하여 아민과 CO₂ 의 반응을 저해시키기 때문이라고 보여진다. 그 결과로 흡수 성능이 21% 감소했다. 이를 볼 때 나노입자는 범용적인 화학반응 억제제로서의 가능성도 가지고 있다.

기포형 흡수기의 흡수성능에 대한 결과는 Figure 2-(b) 그리고 Figure 3 과 같다. figure 2의 결과를 보면 이미 널리 알려진 바와 같이 0.05M 아민 수용액에서는 아민과 CO₂ 의 화학반응으로 흡수속도와 흡수용량이 커진다. 5wt% 실리카용액 에서는 기포의 크기가 감 소하고 그로인해 초기 흡수속도가 굉장히 커지고 흡수 용량도 조금 증가한다. 아민과 실 리카를 같이 넣었을 때는 두 개의 효과가 같이 일어나서 전체 흡수성능이 가장 좋은 것 으로 나타났다. 그리고 Figure 2-(b)에서 볼 수 있듯이 실리카의 분율이 커질수록 흡수 속 도는 증가한다.

액막형 흡수기 에서 CO₂ 흡수에 대한 가능한 Mechanism 은 Figure 4 와 같다. 물에서 는 CO₂ 와 나노입자의 물리적 충돌이 일어나고 나노입자 주위에는 물이 일반상태와 달리 구조를 가진 층을 형성하게 되며 이 부분은 CO₂ 흡수에 관여를 하지 않아 흡수용량 감소 로 이어질 것이라 생각된다. 그리고 아민용액 에서는 추가적으로 나노입자가 아민과 CO₂ 의 화학반응을 억제했기 때문에 보다 많은 흡수성능 감소결과를 보였다고 생각된다.

기포형 흡수기 에서의 흡수 Mechanism 은 Figure 5와 같다. 나노입자의 브라운 운동, 기포의 속도에 의한 운동에너지가 기포의 총에너지를 높여서 기포의 면적을 높이게 된 다. 그로인해 기포의 반경이 작아지면 Young-Laplace 식에 의해 내부압이 증가하게 되고 기체의 용해도가 증가하게 되어 흡수 속도가 커지게 되고 흡수 용량도 증가했을거라 생 각된다. 그리고 아민 용액같이 화학반응이 수반된 흡수 공정에서는 화학반응을 증가시켜 흡수를 증가시킬 것이라 생각된다. 본 연구에서는 두 가지의 서로 다른 타입의 흡수기를 사용하여 나노유체의 흡수 성능 을 분석하였다. 그 결과 액막형 흡수기 에서는 나노유체의 도입에 의해 흡수성능이 감소 되었고 기포형 흡수기 에서는 흡수성능이 증가하였다. 그 이유는 두 가지 서로 다른 흡수 기의 흡수 메카니즘 차이에서 기인한다고 생각된다. 액막형 흡수기 에서는 나노입자가 액막 안에서 차단효과를 일으키고 반응물의 이동마저 저해시켜 화학반응을 저해시킨다고 생각된다. 그리고 기포형 흡수기 에서는 나노입자가 기포의 크기를 작게 하기 때문에 커 진 표면적이 흡수속도를 증가 시킬 거라 보인다. 게다가 이는 기포내의 내부압력을 높이 게 되고 결과적으로 반응속도까지 증가시켜 흡수를 증가시킨다고 생각된다.

감사

본 연구는 한국과학재단(KOSEF, ERC) 유변공정연구센터(ARC)의 연구지원에 의해 수 행되었습니다. 이에 깊은 감사를 드립니다.

References

- S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, Development and Application of Non-Newtonian Flows, FED-Vol. 231/MD-Vol. 66. ASME, New York, 99-105(1995)
- [2] J.A. Eastman, U.S Choi, S.Li, W.Yu and L.J. Thomson, Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letter, 78, 718~720(2001)
- [3] 하종주, 김성현, 암모니아-물 흡수 시스템에서의 SiO₂ 나노입자에 의한 열 및 물질 전달 특성 변화 연구, Korea University, Thesis of master's degree (2003)
- [4] 정준영, 강용태, 이성분 나노유체에서의 암모니아 기포 흡수 성능 향상 , 설비공학 논문집, 제 17권 4호, 312-317(2005)
- [5] Manuel A. Pacheco, CO₂ absorption into aqueous mixtures of diglycolamine and methyldiethanolamine, Chemical Engineering Science 55, 5125-5140(2000)

Figure 1. The schematic diagram of two absorbers (a) Falling film type absorber, (b) Bubble type absorber

Table 1. Calculation of flow variables of our system

Figure 5. Absorption mechanism in bubble type absorber