A Study on Reverse-Water-Gas-Shift Reaction on ZnO Based Catalysts

정성훈, 박영권, 주오심¹, 정광덕^{1,*} 서울시립대학교 환경공학과; ¹한국과학기술연구원 수소에너지연구센터 (jkdcat@kist.re.kr*)

Reverse–Water–Gas–Shift Reaction (RWGSR) was carried out over the ZnO/Al_2O_3 catalysts at the temperature range from $600^{\circ}\mathrm{C}$ to $800^{\circ}\mathrm{C}$. The ZnO showed good specific reaction activity but this catalyst was deactivated. All the catalysts except the ZnO/Al_2O_3 catalyst ($850^{\circ}\mathrm{C}$) showed low stability for the RWGSR and was deactivated at the reaction temperature of $600^{\circ}\mathrm{C}$. The ZnO/Al_2O_3 catalyst calcined at $850^{\circ}\mathrm{C}$ was stable during 210 hrs under the reaction conditions of $600^{\circ}\mathrm{C}$ and 150,000 GHSV, showing CO selectivity of 100% even at the pressure of 5 atm. The high stability of the ZnO/Al_2O_3 catalyst ($850^{\circ}\mathrm{C}$) was attributed to the prevention of ZnO reduction by the formation of $ZnAl_2O_4$ spinel structure. The spinel structure of $ZnAl_2O_4$ phase in the ZnO/Al_2O_3 catalyst calcined at $850^{\circ}\mathrm{C}$ was confirmed by XRD and electron diffraction.