Cu/CexZr1-xO2 촉매에 의한 일산화탄소의 선택적 산화반응

<u>이소연</u>, 이석희, 천재기, 우희철^{*} 부경대학교 응용화학공학부 (woohc@pknu.ac.kr^{*})

The Preferential Oxidation of Carbon Monoxide over Cu/Ce_xZr_{1-x}O₂ Catalysts

<u>So-Yeon Lee</u>, Seok Hee Lee, Jae Kee Cheon, Hee-Chul Woo^{*} Division of Applied Chemical Engineering, Pukyong National University (woohc@pknu.ac.kr^{*})

서론

연료전지는 주목받고 있는 차세대 발전방식이다. 이 연료전지가 지속가능한 차세대 청 정에너지 발전시스템으로 도약하기 위해서 개선필수 과제 중 하나는 연료전지 원료가스 에 잔류하는 피독물질인 CO 를 제거하는 것이다. 이 발전시스템에서 개질기를 통과하여 얻는 수소는 0.5-2.0 vol% CO 를 포함하고 있고, 이는 연료전지로 도입되었을 때 전지촉매 비활성의 원인이 되므 로 10 ppm 이하의 농도 단위가 되도록 제거되어야 한다[1]. 이에 개 질반응 이후에 존재하는 CO 는 수성가스전환 공정을 통해 감소되지만 CO 는 여전히 수백 ppm 의 농도로 남아있게 되므로 추가적인 CO 제거가 필수적이다. 이를 위해 고안된 반응 이 선택적 산화반응 (PROX) 이다[2,3]. 이 반응을 위한 촉매연구는 Pt, Pd, Ru, Rh, Au 등의 귀금속에 집중되어왔으나 최근들어, 경제성의 확보 등의 이유로 전이금속 촉매의 연구도 활발히 진행되고 있다. 특히 Cu/CeO2 촉매는 PROX 반응에 귀금속 촉매와 비견할 만한 활 성을 보여주고 있다[4,5]. 이 촉매의 담체인 CeO2 는 산소저장능력 (OSC)과 열적, 화학적 안정성을 가지는데, 이 특성은 ZrO2 의 첨가로 더욱 강화되며, Cu 금속은 Ce 와 긴밀한 접 촉으로 존재할 경우 증대된 산화환원능력을 가지는 것으로 보고되고 있으므로 PROX 반응 에 있어서 이와 같은 시너지 효과가 기대되어 Cu/Ce_xZr_{1-x}O₂ 촉매계를 선정하였다. 또한 새로운 합성법의 시도로 우수한 활성과 선택도를 지닌 경제적인 PROX 촉매를 개발하고자 하였다.

실험

활성성분인 Cu 가 Ce_xZr_{1-x}O₂ 담체 구조 내부로 들어가 형성되는 것을 피하고, 표면에 고루 분포 시키기 위해서 Fig. 1과 같이 두 단계 합성방법을 고안하였다. 사용한 시약으 로는 Ce(NO₃)_{3'}6H₂O (Crown, 98%), ZrO(NO₃)_{2'}2H₂O (Wako, 99%), Cu(NO₃)_{2'}3H₂O (Junsei, 99%) 등 이 사용되었고, 침전제로는 요소 (NH₂)₂CO (Shinyo, 99%)가 이용되었다. 다양한 금속 비 (x=0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) 의 Ce_xZr_{1-x}O₂ 담체를 효과적으로 합성하기 위해서 수열합성 법을 적용하였고, 다음 단계로 이 담체에 Cu 금속을 고르게 분산시켜 담지 하기 위한 방법으로 microwave heating 을 통한 균일침전법을 사용하였다. CO 산화반응 활성은 2 vol% CO 와 1-5 vol% O₂ 의 조성의 기체흐름으로 130-200 ℃ 온도 조건에서 수행하였고 Cu/Ce_xZr_{1-x}O₂ 촉매에서 Ce 이 차지하는 비율인 x 값에 따른 촉매특성 및 반응활성의 변화를 조사하였다. CO 산화반응에서 고활성을 갖는 촉매에 대해서는 H₂를 과량 포함하는 조건 에서의 PROX 활성이 검토되었다. 촉매의 물리화학적 특징을 조사하기 위해서 XRD, XRF, SEM, TEM, BET, N₂O titration 등의 분석기법이 이용되었으며, 산소저장능력 (OSC) 측정이 수행되었다.

Fig. 1. Preparation procedure for the hydrated CuO/Ce_xZr_{1-x}O₂.

결과

합성한 촉매가 원하는 금속의 비로 존재하는지 알아보기 위하여 원소분석한 결과와 촉매의 결정구조, 그리고 비표면적에 대한 정보를 Table 1에 표시하였다. 이 합성법으로 만들어진 촉매는 원소분석 결과에서 목적 담체 금속함량과 Cu 의 일정한 담지량(1.4-1.8 wt.%)을 실현하는 것을 보여주고 있고, 74-107 m²/g 의 비표면적분포를 가진다. 결과적으로 수열합성법과 균일침전법의 조합을 통하여 Cu/Ce_xZr_{1-x}O₂ 촉매를 효과적으로 제조할 수 있었다.

Cu/Ce _x Zr _{1-x} O ₂ Starting x	Practical composition ^a x value	Cu content ^a (wt%) -	Crystalline	S _{BET} c		
			Major	Minor	$(m^2/g\text{-cat.})$	
0.0	0.0	1.4	monoclinic	-	106.6	
0.1	0.14	1.5	monoclinic	tetragonal	75.4	
0.3	0.46	1.7	cubic	tetragonal	84.5	
0.5	0.49	1.8	cubic	tetragonal	86.4	
0.7	0.67	1.6	cubic	-	74.9	
0.9	0.91	1.4	cubic	-	78.5	
1.0	1.00	1.6	cubic	-	81.2	

Table 1. Chemical and physical properties of CuO/Ce_xZr_{1-x}O₂

a : elemental analysis by XRF, b : major phase of the calcined samples from XRD, c : calculated surface area by N_2 physisorption.

표면에 드러난 Cu⁰의 분산도를 파악하기 위한 Cu/Ce_xZr_{1-x}O₂ 시료들의 N₂O 분해 실험결과는 Table 2에 나타내었고 이를 통해 사용된 담체가 ZrO₂ → Ce_xZr_{1-x}O₂ → CeO₂ 로 갈수록 담 지된 CuO 를 Cu⁰ 로 더 쉽게 환원되게 되며 표면에 드러나는 Cu⁰ 의 수도 증가한다는 것을 알 수 있다. 이를 통해 일산화탄소를 선택적으로 흡착하는 역할을 담당할 것으로 기대된다. Fig. 2에는 각 담체 Ce_xZr_{1-x}O₂ 의 산소저장능력 (OSC) 측정결과를 표시하였다. OSC 는 CeO₂ 의 경우 301 µmol-CO g⁻¹ 이었고, Ce_xZr_{1-x}O₂, x=0.7 인 조성에서 최대가 된다. 이는 산소저장방출능력을 가지는 것으로 알려진 CeO₂ 의 단독 산화물일 때 보다, Ce 의 함량이 x=0.5-0.9 정도일 때가 더욱 증대된 값을 보임으로써 담체의 물성 향상을 도모하게 된 것이다.

	Cu/Ce _x Zr _{1-x} O ₂									
X	0.0	0.1	0.3	0.5	0.7	0.9	1.0			
Cu surface atom number (×10 ¹⁹ atoms/g-cat.)	0.99	1.95	3.47	4.18	9.50	9.70	11.50			
Cu surface area	0.68	1.33	2.37	2.86	6.51	6.64	7.57			

Table 2. Cu surface areas of $Cu/Ce_xZr_{1-x}O_2$ samples

Fig. 2. CO-OSC values of the Ce_xZr_{1-x}O₂ (x=0.0-1.0) samples : Calcined at 500 $^\circ C$ and measured at 500 $^\circ C$.

면저 촉매활성 검토를 위해 수소가 포함되지 않는 범위에서의 CO 산화반응을 수행한 결과를 Fig. 3에서 실선으로 나타내었다. Cu/Ce_xZr_{1-x}O₂ (x=0.0-1.0) 촉매 중에서 CO 산화반응 에 고활성을 나타낸 x=0.5 와 0.7 의 촉매와 단독산화물의 형태인 x=0.0 과 1.0 을 선정하 여 표시한 것이다. 점선으로 표시된 Cu/Ce_xZr_{1-x}O₂ (x=0.0-1.0) 촉매들의 PROX 반응활성을 비교해보면, CO 산화반응 활성과 별다른 차이 없는 활성을 보이고 있다. 이들 촉매활성 은 Fig. 3과 같이 Cu/ZrO₂ 촉매에서 담체에 Ce 를 첨가하였을 경우 CO 의 전환율이 증가하 고, 반응온도가 증가할수록 높아지며 Cu/Ce_xZr_{1-x}O₂ 촉매 중에서 x=0.5, 0.7 인 경우 170 ℃ 의 온도에서부터 CO 전환율이 100% 에 도달한다. 특히, Cu/Ce_{0.5}Zr_{0.5}O₂ 촉매는 170 ℃ 온도 에서 95% 이상의 선택도를 가진다.

촉매의 물리화학적 특성과 활성을 연관시켜볼 때, 담체의 산소저장능력과 활성금속인 Cu 의 적절한 양의 노출을 통한 산화환원반응의 도모로 인해 Cu/Ce_xZr_{1-x}O₂ 촉매는 H₂를 과량 포함하는 가운데 CO 를 선택적으로 산화시킬 수 있는 것으로 판단된다. 특히 200 ℃ 근방이 되면 선택도가 현저히 떨어지게 되므로, 이들 촉매는 반응 온도 150-170 ℃ 영역에 서 PROX 반응에 선택적인 촉매로 작용한다.

화학공학의 이론과 응용 제12권 제1호 2006년

Fig. 3. CO conversion(%) of CO oxidation over Cu/Ce_xZr_{1-x}O₂ : Effect of the H₂ addition. (Mass of catalyst=0.15g ; Total flow=100 mL/min ; Feed composition- (a)~(d) : 2% CO, 3% O₂ and He balance, (e)~(h) : 20% H₂, 2% CO, 3% O₂ and He balance)

결론

수열합성과 균일침전법의 조합으로 만들어진 Cu/Ce_xZr_{1-x}O₂ (x=0.5-0.7) 촉매는 150-170 ℃ 의 반응온도범위에서 PROX 반응에 대한 고활성 촉매이다. 이들 촉매는 Cu⁰ 의 적절한 표면 분포로 인한 금속과 담체간의 O₂ spillover 현상과 담체 Ce_xZr_{1-x}O₂ 의 산소저장방출능력에 기인하는 활성화된 O₂ 의 제공으로 상호작용이 일어나 PROX 에 고활성을 나타내는 것으 로 판단된다.

<u> 참고문헌</u>

- 1. Mariño, F., Descorme, C. and Duprez, D., "Supported Base Metal Catalysts for the Preferential Oxidation of Carbon Monoxide in the Presence of Excess Hydrogen (PROX)", *Appl. Catal. B-Environ.*, **58**(3-4), 175-183(2005).
- Ratnasamy, P., Srinivas, D., Satyanarayana, C. V. V., Manikandan, P., Kumaran, R. S. S., Sachin, M. and Shetti, V. N., "Influence of the Support on the Preferential Oxidation of CO in Hydrogen-Rich Steam Reformates over the CuO-CeO₂-ZrO₂ System", *J. Catal.*, 221(2), 455-465(2004).
- 3. Choudhary, T. V. and Goodman, D. W., "CO-Free Fuel Processing for Fuel Cell Applications", *Catal Today*, 77(1-2), 65-78(2002).
- 4. Mariño, F., Descorme, C. and Duprez, D., "Noble Metal Catalysts for the Preferential Oxidation of Carbon Monoxide in the Presence of Hydrogen (PROX)", *Appl. Catal. B-Environ.*, **54**(1), 59-66(2004).
- Park, J. W., Lee, Y. W., Jeong, J. H., Lee, D. K., Park, Y. K. and Yoon, Y. L., "Selective Oxidation of CO in Hydrogen Rich Stream over Cu-Ce/ γ -Al₂O₃ Catalyst Doped with Co", *HWAHAK KONGHAK*, 41(4), 445-452(2003).