Spectroscopic Studies on NiO Supported on ZrO_2 Modified with MoO_3 for Ethylene Dimerization

<u>이성규</u>, 신동철, 손종락* 경북대학교 (jrsohn@knu.ac.kr*)

NiO supported on zirconia modified with MoO₃ for ethylene dimerization was prepared by drying powdered Ni(OH)₂–Zr(OH)₄ with $[(NH_4)_6(Mo_7O_{24})_{\bullet}4H_2O]$ solution, followed by calcining in air at high temperature. The characterization of prepared catalysts was performed using FTIR, Raman, XRD, and DSC. MoO₃ equal to or less than 15 wt% was dispersed on the surface of catalyst as two-dimensional polymolybdate or monomolybdate, while for MoO₃ above 15 wt%, crystalline orthorhombic phase of MoO3 was formed, showing that the critical dispersion capacity of MoO₃ on the surface of catalyst is 0.18 g/g NiO-ZrO₂ on the basis of XRD analysis. From 600 °C of calcination temperature, zirconium molybdenum oxide, $Zr(MoO_4)_2$ was formed due to the reaction between ZrO_2 and MoO3; its amount increased with the calcination temperature. Acidity and catalytic activity of catalyst increased with the amount of dispersed MoO₃. The high acid strength and acidity was responsible for the Mo=O bond nature of the complex formed by the interaction between MoO₃ and ZrO₂. The catalytic activity for ethylene dimerization was correlated with the acidity of the catalysts measured by the ammonia chemisorption method.