Characterization of nickel sulfate supported on SiO_2 for ethylene dimerization and promoting effect of Al_2O_3 on catalytic activity

<u>이성규</u>, 손종락* 경북대학교 (jrsohn@knu.ac.kr*)

A series of catalysts, NiSO₄/SiO₂, for ethylene dimerization were prepared by the impregnation method using aqueous solution of nickel sulfate. Although SiO₂ without NiSO₄ was inactive as catalyst for ethylene dimerization, the SiO₂ with NiSO₄ exhibited catalytic activity even at room temperature. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The addition of Al₂O₃ enhanced the acidity, thermal property, and catalytic activities of catalysts, due to the interaction between Al₂O₃ and SiO₂ and due to consequent formation of Al–O–Si bond. The high catalytic activity of NiSO₄/SiO₂–Al₂O₃ was closely correlated with the increase of acidity and acid strength due to the addition of Al₂O₃ and NiSO₄. The sample having 15–20 wt% of NiSO₄ and calcined at 400–500 °C for 1.5 h exhibited maxima for catalytic activity and acidity. In view of IR results of CO adsorbed on NiSO₄/SiO₂–Al₂O₃, it is concluded that the active sites responsible for ethylene dimerization consist of a low–valent nickel, Ni⁺, and an acid.