BTX 분리용 열복합 증류탑(Fully Thermally Coupled Distillation Column: FTCDC)의 운전과 제어 및 동적모사

<u>박창원</u>, 정승배, 황희태, 황규석* 부산대학교 화학공학과 (kshwang@pusan.ac.kr*)

Study on Operation Design, Control Design and Dynamic Simulation of BTX Separation using FTCDC(Fully Thermally Coupled Distillation)

<u>Chang Won Park</u>, Seung Bae Jung, Hee Tae Hwang, Kyu Suk Hwang^{*} Department of Chemical Engineering, Pusan national university (kshwang@pusan.ac.kr^{*})

<u>서론</u>

열복합 증류탑(Fully Thermally Coupled Distillation Column: FTCDC)의 열역학적 효율은 반 세기전에 소개된 재래식 증류 시스템의 효율보다 높지만 열복합 증류탑의 운전상의 어려 움으로 인하여 그 이용이 제한되어 왔다. 하지만 최근 석유 및 화학공업산업은 그 특성 상 에너지 대량소비산업에 속하며 제품의 생산비 절감을 위해서는 에너지 비용의 절감이 절실하다. 제조업 중에서 석유 및 화학 공정에서의 에너지 비율은 50%에 이르며, 증류공 정이 40%이상을 차지하므로 증류 공정에서의 에너지 절감을 통하여 에너지 비용을 절감 할 수 있다. 국외에서는 증류공정에서의 에너지 절감을 위한 공정개선의 연구·개발이 시행되고 있으며, 몇몇 나라에서는 에너지 절약형 증류공정이 개발되어 일부 상용화시켜 많은 에너지를 절감하고 있다. 하지만 국내의 석유 및 화학공장에서는 재래식 증류공정 을 사용하고 있어 막대한 에너지 손실을 보고 있다. 열복합 증류탑의 경우 기존의 방식 에 비해 에너지 절감 효과가 최대 60%까지 절감 할 수 있다고 알려져 최근 가장 대두되 고 있지만, 복잡한 공정 구조를 가지고 있어 그 설계, 운전 및 제어의 어려움이 있다. 본 연구에서는 BTX 분리용 열복합 증류탑을 대상 공정으로 하고 BTX 분리용 열복합 증류탑의 동적 모사를 HYSYS SIMULATOR를 이용하여 제어 가능한 구조를 연구하여 제 어성능의 평가와 공정을 확인한다.

본론

1. BTX 분리 열복합 증류탑(FTCDC)의 설계

FCCDC의 구조적 설계를 위한 중요한 정보와 column의 운전을 위해서 필요한 조절, 제어 변수들을 선정하기 위해서는 자유도 분석이 요구된다. 표 1.에서처럼 10개의 자유 도가 분석 되었으며, 10개의 자유도는 6개의 구조적 설계에 관련된 변수들과 4개의 운전

화학공학의 이론과 응용 제13권 제2호 2007년

에 관련된 변수들의 두 그룹으로 나뉜다.

열복합형 증류탑은 전처리탑과 주탑으로 구성되며 탑의 단수, 두 탑의 연결위치, 원료 공급단, 중간제품 배출단의 결정을 위한 설계는 잔화류 조작에 의해 증류를 한다고 가정 하면 최소의 증류단수를 계산할 수 있고 최소 증류단의 단수를 2배로 하여 실제 소요의 증류단수를 계산할 수 있다. 표 2를 통해 구조적 설계 결과를 알 수 있다.

Table. 1. Degrees of freedom analysis.

Unknowns	Number			
Numbers in trays	6(NT, NT2, NF, NP, NR, NS)			
Flow rate splits (L, V)	2			
Liquid composition (x _{n,l})	(NT+NT₂+2)NC			
V apor composition $(y_{n,l})$	(NT+NT₂+1)NC			
V apor boilup rate (VB)	1			
Reflux flow rate (LD)	1			
Total	(2NT+2NT2+3)NC+10			
Equations	Number			
Component material balance	(NT+NT₂+2)NC			
Equilibrium relation	(NT+NT2+1)NC			
Total	(2NT+2NT2+3)NC			
Degrees of freedom	10			

Table 2. Result of structural design.

Name	Prefractionator	Main Column	
Number of trays	21(18)	89(82)	
Feed/	7	28	
Side product			
Interlinking stages		6	
		74(58)	

2. 동적 모사

동적모사에 대한 정규모델에서 이상적인 단 효율은 가정되며 증기 holdup은 무시된다. 초기의 액체 흐름 속도로부터 단들의 액체 holdup은 Francis weir방정식을 사용하여 계산 되며, 이때 정확한 단 holdup이 요구된다. 액체 조성에서 증기조성과 단 온도는 UNIQUAC 평형관계식을 이용하며, 증기 흐름 속도는 n번째 단의 에너지 수지로부터 얻 게 된다.

Fig. 1. PFD of a fully thermally coupled distillation column is Dynamic Mode.

동적 모사를 통해서 기존의 연구 논문에서 설계한 BTX분리 공정을 안정적으로 제어 할 수 있는 제어구조를 찾기 위해서 HYSYS의 dynamic mode를 사용하여 대상공정을 simulation 한다. 그림 1은 Dynamic mode에서의 simulation 결과를 나타내고 있다.

(단위: kgmole/h)

Changes	Base	+2%	+4%	+8%	-2%	-4%	-8%
Reflux	1607	1638.9	1671	1735.2	1574.7	1542.6	1478.4

Fig. 2. Step responses of reflux flow rate changes.

Reflux flow rate의 변화에 대한 응답이 위의 그림에서 나타내고 있다. 그림 1에서는 side product의 조성이 큰 폭으로 증가 할 때 main column의 하부의 압력 또한 비정상적으로 급격한 상승이 나타났다(25kPa 상승). 이는 탑 전체의 압력강하 증대에 따른 tray flooding 등의 비정상상태 공정을 유발시킬 요지가 있다. 적절한 main column의 하부 압력제어가 이루어진다면 side product의 높은 purity(0.99이상)을 얻을 수 있을 것으로 보이며, reflux flow rate는 overhead product의 조성제어를 위한 적절한 조절변수로 판단된다.

(단위: kgmole/h)

Changes	Base	+2%	+4%	+8%	-2%	-4%	-8%
PD2	290	295.8	301.6	313.2	284.2	278.4	266.8

Fig. 3. Step responses of prefractionator flow rate changes.

그림 2에서는 side product의 조성이 3가지 제품들의 조성 중에 가장 큰 응답을 보였다. Overhead product 와 bottom product에서는 prefractionator flow rate의 변화에 대한 영향이 적 었으며, side product의 응답은 각 변화량에 대하여 일정한 증가·감소를 보여 안정된 제 어를 예상할 수 있다.

(단위: kgmole/h)

Changes	Base	+2%	+4%	+8%	-2%	-4%	-8%
Reboiler Duty	12.75	13.01	13.26	13.77	12.50	12.24	11.73

Fig. 4. Step responses of reboiler changes.

그림 3은 증기유량 변화에 대한 응답들로 overhead product의 조성 응답은 변화가 없었 으며 side product에서는 약간 큰 응답을 보였다. 하지만 그 응답은 짧았고 side product의 배출단이 28단으로 reboiler와 가까우며, rebiler duty에 의한 side product 조성의 간섭은 적 당한 것으로 사료된다.

결론

구조적 설계방법에 의해 운전 변수들의 초기 정보를 얻었으며, 그 변수들은 동적모사에 적용 되었다. 대상공정인 BTX분리공정은 HYSYS 공정모사기를 사용하여 모델링 되었으 며, 설계로부터 얻은 액체와 증기 흐름 속도, 온도, 액체 조성의 초기값을 사용하여 증 류탑의 가능한 제어구조에 대한 3개 product 사양들의 몇몇 단계 응답들을 얻기 위해 동 적모사가 수행 되었다. 동적 모사 과정에서 열복합 증류탑의 제어변수를 상부·중간·하 부제품의 주성분 3가지로 하고 조절변수를 reflux flow rate, prefractionator flow rate, reboiler의 3가지로 하는 3 by 3 제어 구조를 발견하였다. 동적 모사를 통해 검증된 3 by 3제어 구 조는 열복합 증류탑에서 만족스런 결과를 얻을 수 있었다. 상부변화에 가장 많은 영향을 주는 변수는 Side Flow, 탑 하부의 조성변화에 가장 많은 영향을 주는 변수는 Rebiler heat duty라는 것을 확실하게 알 수 있다. 이로써 3 by 3제어주조를 열복합 증류탑을 운전을 가능하게 하게 한다.

<u>참고 문헌</u>

- 1. Fidkowski, Z. and Krolikowski, L., 1987, AIChE J, 33(4): 643, 1987
- 2. Wolff, E. A. and S. Skogestad, Ind. Eng. Chem. Res., 34, 2094-2103, 1995.
- 3. Kim, Y. H., M. and Hwang, K.S., Korean J. Chem. Eng., 19, 383, 2002.

화학공학의 이론과 응용 제13권 제2호 2007년