Complex Structure Transition of Pure and Mixed Ionic Clathrate Hydrates

<u>최숙정</u>, 신규철, 차종호, 이 흔* 한국과학기술원 (h_lee@kaist.ac.kr*)

We report an extraordinary structural transition accompanying the occurrence of more than two coexisting clathrate hydrate phases in the mixed ionic (CH₄ + tetramethylammonium hydroxide (Me₄NOH)) hydrate system. The changing structure of ionic (CH₄ + Me₄NOH) hydrate was investigated by NMR spectroscopy, and lattice structure information was obtained by assigning the structure–specific chemical shifts from ¹³C NMR spectra. In addition, the structures of the ionic hydrates identified from NMR spectroscopy were confirmed by using powder X–ray diffraction (PXRD). From the ¹³C NMR spectra, it is confirmed that structure–I (sI) and structure–II (sII) hydrates are dominant when water concentration is more than 16.0 mol H₂O per 1.0 mol Me₄NOH (16.0 H₂O). Significantly, quiet small signals from CH₄ in large cages of sI and sII hydrates, compared to ideal distributions of CH₄ in sI and sII cages, imply that Me₄N⁺ is enclosed in both sI–L and sII–L at the higher degree of hydration, and sII preference of cationic guest can be also confirmed by the 1H NMR spectra. PXRD patterns and ¹³C NMR spectra reveal the complex structure transition of ionic (CH₄ + Me₄NOH) clathrate hydrate as a function of water concentration.