The preferable preparation method of SPEEK/BPO₄ composite membranes for enhancement of proton conductivity via an in-situ sol-gel process

조은경^{1,2}, <u>박진수^{2,*}</u>, 박승희^{3,2}, 양태현², 이원용², 김창수², 박승빈¹ ¹한국과학기술원 생물화학공학과; ²한국에너지기술연구원 수소연료전지연구본부 고분자연료전지연구단; ³한양대학교 화학공학과 막분리연구실 (park@kier.re.kr*)

Sulfonated poly(ether ether ketone) (SPEEK)/boron phosphate (BPO₄) composite membranes were prepared via an in-situ sol-gel process. Several variables such as reaction time, reaction temperature and solution-cast form of SPEEK were investigated to explain the relationship between the size of BPO₄ and the proton conductivity. The size of BPO₄ and proton conductivity were not dependent on reaction time and reaction temperature in the insitu sol-gel process, while the solution-cast form of the membranes strongly influenced the size of BPO₄. The composite membrane using H⁺-form SPEEK included the bigger size of BPO₄ in the matrix. Moreover, water uptake of the composite membrane using H⁺-form SPEEK due to the bigger size of BPO₄, and the proton conductivity was enhanced in the composite membranes using H⁺-form SPEEK.