The effect of H₂O on the activation of potassium based dry sorbents for SO₂ removal at low temperature

이수재, 정석용, 이수출, 김재창* 경북대학교 (kjchang@knu.ac.kr*)

Sulfur oxides(SOx) can be formed by oxidation of sulfur in fossil fuel and emitted from the industrial processes. In this study, the K_2CO_3 -based dry sorbents were prepared by impregnation of potassium carbonate on the alumina supports. The SO_2 absorption was tested in a fixed-bed at low temperature conditions(30°C in the presence of 5000 ppm of the SO_2). Their abilities of SO_2 absorption were investigated under the various the H_2O concentrations (1 vol%~9 vol%). The SO_2 removing capacities of potassium based sorbents increased with the H_2O concentration in our experimental range. It was found that the H_2O played an important role in transforming the K_2CO_3 phase into $K_2CO_3 \cdot 1.5H_2O$ (activation species) which could be easily absorbed SO_2 . Moreover, the formation of active species in potassium based sorbents is directly related to the SO_2 removing capacity. Characterization of sorbnets by the results of XRD, FT-IR and BET were carried out and the results were discussed.