Demonstration of Long–Term Operation with a Potassium–Based Dry Sorbent for CO₂ Capture in Two Interconnected Fluidized Bed Reactor

<u>박영철</u>*, 조성호, 이규백¹, 박근우², 류호정, 이창근 한국에너지기술연구원; ¹한밭대학교; ²대전대학교 (youngchp@kier.re.kr*)

The CO_2 removal in dry sorbent CO_2 capture system consists of two reactors for carbonation and regeneration. We used spray-dried sorbents contained alkali carbonate, which was supplied by KEPRI in order to see the sorbent performance in continuous operation mode with solid circulation. The process with $2Nm^3/h$ of gas treatment capacity has been continuously operated during 50 hours, circulating potassium-based solid sorbents between a fast fluidized-bed carbonator and a bubbling fluidized-bed regenerator. 13% inlet CO_2 concentration in a flue gas stream has been maintained during continuous operation. The effects of CO_2 removal on the solid circulation rate and the regeneration temperature were examined. Increasing the solid circulation rate and the regeneration temperature gave rise to the increase of the overall CO_2 removal.