Preparation and CO_2 adsorption characteristics of aminosilane-modified SBA-15

<u>고용식</u>*, 장현태¹, 박윤국² 신성대학; ¹한서대학교; ²홍익대학교 (ysko@shinsung.ac.kr*)

Highly-ordered aminosilane-modified SBA-15 materials were prepared by grafting or coating 3-aminopropyltriethoxysilane onto the surface of mesoporous silica SBA-15. X-ray powder diffraction, scanning and transmission electron microscopies, Fourier transform infrared spectroscopy, physical adsorption of nitrogen, elemental analysis as well as CO_2 adsorption/desorption characteristics were performed to evaluate their physico-chemical properties of aminosilane-modified SBA-15 materials. The modified SBA-15 materials still possessed well-ordered hexagonal mesoporous structure and high surface area and pore volume. The aminosilane-modified SBA-15 adsorbents exhibited high CO_2 adsorption capacities. The adsorption of CO_2 on such adsorbents was reversible; therefore, the saturated adsorbent could be regenerated completely under mild conditions such as those used in pressure swing or temperature swing adsorption processes.