Hydrothermal synthesis of Cr and Fe co-doped TiO₂ nanoparticle

김현규, 장점석¹, 지상민¹, 배상원¹, 김혜진, 하명규, 이재성^{1,*} 한국기초과학지원연구원 부산센터; ¹포항공과대학교 화공과 (jlee@postech.ac.kr*)

We report here the new findings on the visible light photodecomposition activity of gaseous iso-propyl alcohol over Cr and Fe co-doped TiO₂ nanoparticles. High surface area, doped TiO₂ nanoparticles were synthesized hydrothermally and co-dopant effects are investigated. The physico-chemical properties of the co-doped nanoparticles led to efficient photocatalysts. Cr and Fe co-doped TiO₂ nanoparticles exhibited two times higher photocatalytic activity for photodecomposition of gaseous isopropyl alcohol than the individually (Cr/ Fe) doped TiO₂ nanoparticles under visible light irradiation (λ >420nm). The activity is mainly correlated to the larger absorptions around 496nm and 563nm wavelengths by co-doped TiO₂ nanoparticles than Fe doped TiO₂ nanoparticles those possibly absorb \leq 496nm.