Enhanced photocatalytic properties of electron rich W-doped PbBi₂Nb₂O₉ layered perovskite material under visible light irradiation

김현규, 장점석¹, 지상민¹, 배상원¹, 정의덕, 유성미, 이재성^{1,*} 한국기초과학지원연구원 부산센터; ¹포항공과대학교 화공과 (ilee@postech.ac.kr*)

The substitution effect of W^{6+} at Nb^{5+} site in PbBi2Nb2O9, a layered Aurivillius-phase perovskite system, has been studied and further optimized to fabricate an efficient photocatalyst. The material doped with electron donor (W^{+6}) , PbBi₂Nb_{2-x}W_xO₉ with an optimum composition of x=0.15 exhibited a red shifted (0.14eV) band gap, generated two times higher photocurrent, and showed analogous higher quantum yield for photodecomposition of H_2O/CH_3OH solution than undoped material under visible light ($\lambda \ge 420$ nm). In contrast, the material doped with hole donor (Ti^{+4}) revealed deteriorated photochemical properties. The higher electron density by n-type doping seems to be responsible for the more efficient charge separation in PbBi₂Nb_{2-x}W_xO₉ (0<x<0.5).