Photocatalytic decompositon of IPA over W-doped PbBi₂Nb₂O₉ material under visible light irradiation

김현규, 장점석¹, 지상민¹, 홍석준¹, 장지민, 정의덕, 이재성^{1,*} 한국기초과학지원연구원 부산센터; ¹포항공과대학교 화공과 (ilee@postech.ac.kr*)

In order to perform the study we designed and fabricated p-type and n-type materials by doping PbBi₂Nb₂O₉. The PBNO is an undoped, single-phase Aurivillius-phase layered perovskite photocatalyst [10], efficient for decomposition of water into O₂ or H₂ under visible light irradiation (\geq 420nm). For n-type PBNO we introduced W⁶⁺ for Nb⁵⁺ in the perovskite lattice by the solid state reaction method. In order to explore the effect of doping concentration, we further varied the W⁺⁶ concentration to make PbBi₂Nb_{2-x}W_xO₉ (x = 0.1 - 0.5 mol%, PBNWO). Similarly, we introduced Ti⁺⁴ for Nb⁺⁵ in the lattice of PBNO to make p-type PbBi₂Nb_{1.85}Ti_{0.15}O₉ (PBNTO). In addition to the desired valencies, the dopants W⁺⁶ and Ti⁺⁴ were chosen because of their similar sizes to that of Nb⁺⁵. Finally we investigated photocatalytic and photoelectrochemical performance of these materials for photocurrent generation and CO₂ production from IPA under visible light irradiation ($\lambda \geq$ 420nm).