Characterization and toluene oxidation of perovskite-type oxide catalyst LaCoO₃: Effect of different preparation methods

Perovskite-type oxide $LaCoO_3$ as a substitute of noble metal catalysts has high potential for their use in various oxidations. Perovskite structure require high calcination temperature (> 900°C) for forming perovskite structure and hence yield perovskite-type oxides with low surface area (<2 m²/g) due to sintering.

In this research, the effect of precursor, calcinations temperature and pH of different preparation methods for the perovskite-type oxide $LaCoO_3$ was studied.

 $LaCoO_3$ obtained was characterized with XRD, N₂-adsorption/desorption, and SEM. $LaCoO_3$ was applied as a catalyst for oxidation of toluene. Catalytic performance of $LaCoO_3$ was compared with those of $LaCoO_3$. The $LaCoO_3$ catalyst to have high surface area and accurate perovskite structure was the most active.