High Pressure Phase Behavior for CO_2 + Benzyl Acrylate and CO_2 + Benzyl Methacrylate Systems

<u>변헌수</u>*, Shuang Liu 전남대학교 공학대학 생명화학공학부 (hsbyun@chonnam.ac.kr*)

High pressure phase behavior are obtained for CO_2 + benzyl acrylate systems at 40 ~ 120 °C and pressures up to 243 bar and for CO_2 + benzyl methacrylate systems at 40, 60, 80, 100 and 120 °C and pressures up to 244 bar. The solubility of monomers for the CO_2 + benzyl acrylate and CO_2 + benzyl methacrylate systems increase as the temperature increases at constant pressure. The CO_2 + benzyl acrylate and CO_2 + benzyl methacrylate systems for CO_2 + benzyl methacrylate systems exhibit type–I phase behavior. The experimental results for CO_2 + benzyl acrylate and CO_2 + benzyl acrylate and CO_2 + benzyl methacrylate systems were correlated with Peng–Robinson equation of state using a van der Waals one–fluid mixing rule including two adjustable parameters. Critical constants (P_c , T_c and ω) were predicted with Joback method and Lee–Kesler method.