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1. Introduction 

The classical lattice models [1-3] have been successfully applied to describe the phase equilibrium 
of wide range industrially important fluids, such as alkanes, polymers and associating fluids. However, 
the accuracy of the lattice fluid models is limited to the region of the phase diagram away from the 
critical region due to mean-field approximation. For example, the classical lattice fluid model has an 
over-prediction of the critical point, as illustrated by dotted line in Figure 1. In order to improve the 
description of the gas-liquid critical locus for pure fluids, the lattice model parameters can be rescaled 
[4] to the experimental pure fluid critical point, and an accurate representation of the critical locus is 
obtained. However, despite the success achieved using rescaled lattice model, poor agreement is 
obtained for the coexisting liquid densities. Thus, in common with all classical equations of state, a 
single set of parameters in unable to describe accurately both the near critical and sub-critical regions. 
Hence, a better approach to describe the critical region with the lattice fluid model is needed. 

In this study, we have combined the qausi-chemical lattice fluid equation of state with a crossover 
technique developed by Kiselev [5,6] to obtain the crossover lattice fluid equation of which 
incorporates the critical scaling laws valid asymptotically close to the critical point and reduces to the 
original classical equation of state far from the critical point 
 
2. A crossover qausi-chemical lattice fluid EOS 

The qausi-chemical lattice fluid (QLF) model [3] with no temperature dependence of pure 
parameters developed recently by the present authors and the QLF model was capable of describing 
thermodynamics properties of fluids in a wide range, except near the critical region. The QLF EOS 
was represented as follows; 
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where the reduced temperature, pressure, and density is defined by  
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The QLF EOS has three molecular parameters; *,,* vε  and r , or equivalently the scale factors 
,, ** PT or *ρ . The residual Helmholtz free energy ),( vTAr  was obtained as follows; 

T
nRTqnRT

r
qrnRTnrRTznrRT

dV
V

nRTPvTA
Vr

~)~)1(1ln()1(~2
)~1ln()1~

1(

),(

θρ
ρ

ρ
ρ

−+−+






 −+−






 −−=







 −−= ∫∞

    (3) 

The molar Helmholtz free energy can be written as: 
),(),(),( vTavTavTa idr +=                                                 (4) 

where ),( vTar is the residual molar Helmholtz free energy and ),( vTaid is the molar Helmholtz 
free energy for ideal gas 

)(ln),( 0 TavRTvTaid +−=                                                 (5) 
In Eq. (5), )(Tao is the temperature-dependent part of the Helmholtz free energy for ideal gas. 

We rewrite the classical expression for the Helmholtz free energy ),( vTA in the dimensionless 
form as follows; 
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The classical critical parameter ococ PT , and ocv  can be calculated from the condition 
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In order to derive the crossover (xQLF) EOS, we need to recast the classical expression for 
Helmholtz free energy into dimensionless form as follows; 

),(),(),( vTAvTAvTA bg ∆∆+∆∆∆=                                           (9) 
where the critical part of the Helmholtz free energy 

)()1ln()0,(),(),( 0 TPvvTAvTAvTA rr ∆∆++∆−∆−∆∆=∆∆∆                     (10) 
and the background contribution is given by 
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In Eqs. (9-11), 1/   ,1/ −=∆−=∆ ococ vvvTTT  are dimensionless distances from the classical 

temperature ocT and molar volume ocv respectively. RTvTPTP oc /),()(0 = is the dimensionless 

pressure, ),()(0 oc
rr vTATA =  is the dimensionless residual part of the Helmholtz free energy along 

the critical isochore ocvv = . 
We then replace the classical dimensional temperature T∆ and v∆ in the singular or critical term 

with renormalized values. 
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where 11.0=α , =β 325.0 , 24.122 =−−= αβγ  and 51.01 =∆  are universal non-classical 
critical exponent. 1)/( −= cTTτ  is a dimensionless deviation of the temperature from the real 
critical temperature cT , 1)/( −= cvvϕ  is a dimensionless deviation of the molar volume from the 
real critical molar volume cv , and 1)/( −=∆ occc TTτ , 1)/( −=∆ occc vvv . 
The crossover function Y can be written in the parametric form 
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where q  is a renormalized distance to the critical point and can be found from the solution of the 
crossover sine-model (SM). 
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where 2b  is the universal linear-model parameter and 2p  the universal sine-model parameters, 
359.122 == bp . Gi  is the Ginzburg number for the fluid of interest and we set 10 =m  in this 

study. 11   , dv , and Gi are the system-dependent parameters. 
Finally, the crossover expression for the Helmholtz free energy can be written in the form 
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where, the critical part A∆ is written as 
)0,()1ln()0,(),(),( 0 τϕϕτϕτϕτ PAAA rr ++−−=∆                           (17) 
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The xLF EOS can be obtained by differentiation of Eq. (16) with respect to volume 




















∂

∂++







∂

∆∂−=







∂
∂−=

Tc

oc

Tc

oc

ocT

K
v
vTPA

v
v

v
RT

v
AvTP

ϕ
τ

ϕ
ϕτ )()(),(),(

2

0             (19) 

The crossover function Y  asymptotically close to the critical point renormalizes T∆ and v∆ in 
accordance with Eqs. (12) and (13), so giving the correct non-analytical asymptotic behavior of real 
fluids in the critical region. Far away from the critical point the crossover function 1→Y , T∆→τ  
and v∆→ϕ , and Eq. (16) is reduced to the classical Helmholtz free energy Eq. (9) 

The second order is also calculated by the thermodynamic relations as follows; 
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3. Results and Discussion 

For one-component fluids, the xQLF EOS contains four sets of system-dependent parameters: (1) 
the classical parameters, **, PT and *ρ ; (2) the crossover parameters, 1 , vGi and 1d ; (3) the critical 
shifts of fluids, cτ∆ and cv∆ ; (4) kernel term parameters, 20a and 21a  . Since the real parameters 

cT and cv for one-component fluids are usually known, cτ∆ and cv∆ are known too. As a 
consequence, the xQLF EOS contains 8 adjustable parameters. We find these parameters for carbon 
dioxide by fitting the xQLF EOS to their experimental saturated vapor pressure and saturated density 
data. All experimental data are obtained from the NIST database [7].  



Theories and Applications of Chem. Eng., 2007, Vol. 13, No. 1 

화학공학의 이론과 응용 제 13 권 제 1 호 2007 년 

825

T / K

240 260 280 300 320

P
 / 

M
Pa

0

2

4

6

8

10

Exp.
QLF EOS
xQLF EOS

Density / mol L-1

0 10 20 30

T 
/ K

240

260

280

300

320

Exp.
QLF EOS
xQLF EOS

density / mol L-1

0 5 10 15 20 25

P 
/ M

P
a

0

5

10

15

20

260 K
280 K
300 K
310 K
320 K
340 K
VLE data
QLF EOS
xQLF EOS

Comparisons of the xQLF EOS with experimental data and the classical QLF EOS are shown in 
Figure 1 for carbon dioxide. From the figure we can see the over-prediction of the critical point with 
the QLF approach, compared to the excellent agreement obtained with the xQLF EOS. With the xQLF 
EOS we are able to achieve excellent agreement with experimental data both in the critical region and 
at low temperatures and pressures.  
 

4. CONCLUSION 
A crossover lattice fluid (xQLF) EOS is developed. The classical lattice fluid (QLF) EOS fails to 

reproduce the non-analytical, singular behavior of fluids in the critical region. Through the 
incorporation of a crossover function into the LF EOS, which exhibits classical behavior in the critical 
region rather than the non-analytical, singular behavior seen in real fluids we are able to provide an 
accurate description of the whole phase diagram using xLF EOS. The results presented here for 
selected carbon dioxide are seen to be in excellent agreement with experimental data both near to and 
far from the critical region.  
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            (a)                               (b)                             (c) 
Figure 1. The TPρ data (a), saturated density data (b), vapor pressure data (c for carbon dioxide with 
predictions of the QLF and xQLF EOS. 
 


