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1. Introduction

The classical lattice models [1-3] have been successfully applied to describe the phase equilibrium
of wide range industrially important fluids, such as alkanes, polymers and associating fluids. However,
the accuracy of the lattice fluid models is limited to the region of the phase diagram away from the
critical region due to mean-field approximation. For example, the classical lattice fluid model has an
over-prediction of the critical point, as illustrated by dotted line in Figure 1. In order to improve the
description of the gas-liquid critical locus for pure fluids, the lattice model parameters can be rescaled
[4] to the experimental pure fluid critical point, and an accurate representation of the critical locus is
obtained. However, despite the success achieved using rescaled lattice model, poor agreement is
obtained for the coexisting liquid densities. Thus, in common with all classical equations of state, a
single set of parameters in unable to describe accurately both the near critical and sub-critical regions.
Hence, a better approach to describe the critical region with the lattice fluid model is needed.

In this study, we have combined the qausi-chemical lattice fluid equation of state with a crossover
technique developed by Kiselev [5,6] to obtain the crossover lattice fluid equation of which
incorporates the critical scaling laws valid asymptotically close to the critical point and reduces to the
original classical equation of state far from the critical point

2. A crossover qausi-chemical lattice fluid EOS

The qausi-chemical lattice fluid (QLF) model [3] with no temperature dependence of pure
parameters developed recently by the present authors and the QLF model was capable of describing
thermodynamics properties of fluids in a wide range, except near the critical region. The QLF EOS
was represented as follows;
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where the reduced temperature, pressure, and density is defined by
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The QLF EOS has three molecular parameters; g, v* andr, or equivalently the scale factors

T",P",or p*. The residual Helmholtz free energy A" (T,v) was obtained as follows;

A" (T, V) =— LV(P— ”I;T jdV
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The molar Helmholtz free energy can be written as:

a(T,v)=a (T,v)+a“(T,v) 4)

where a’(T,v)is the residual molar Helmholtz free energy and a™(T,v)is the molar Helmholtz
free energy for ideal gas

a“(T,v)=—RT Inv+a,(T) Q)

In Eq. (5), a,(T) is the temperature-dependent part of the Helmholtz free energy for ideal gas.

We rewrite the classical expression for the Helmholtz free energy A (T',v) in the dimensionless

form as follows;
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The classical critical parameter 7, , P _and v, can be calculated from the condition
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In order to derive the crossover (XQLF) EOS, we need to recast the classical expression for
Helmholtz free energy into dimensionless form as follows;

A(T,v) = AA(AT,Av) + 4,, (AT, Av) )
where the critical part of the Helmholtz free energy

AA(AT,Av) = A" (AT,Av)— A" (AT,0) - In(Av +1) + AvR,(AT) (10)
and the background contribution is given by

Ay (AT, Av) = =AvE(T) + Ay (T) + 4,(T) —Inv,, (11)

In Egs. (9-11), AT=T/T, -1, Av=v/v, —1 are dimensionless distances from the classical
temperature 7, and molar volume v, respectively. P,(T)= P(T,v, )/ RT is the dimensionless
pressure, ZOV (I)=A'(T, v,.) is the dimensionless residual part of the Helmholtz free energy along

the critical isochore v=v .
We then replace the classical dimensional temperature AT and Av in the singular or critical term
with renormalized values.
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where 2 =0.11, f= 0325, y=2-2f—-a =124 and A =0.51 are universal non-classical
critical exponent. 7=(7/T,)—1 is a dimensionless deviation of the temperature from the real
critical temperature 7,, @ =(v/v,)—1 is a dimensionless deviation of the molar volume from the
real critical molar volume v,,and Az, =(7,/T,,)-1, Av,=(v,/v,)—1.

The crossover function Y can be written in the parametric form

24,
Y(q)= ( g j (14)
I+g¢g

where ¢ is a renormalized distance to the critical point and can be found from the solution of the
crossover sine—model (SM).
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where b~ is the universal linear-model parameter and p~ the universal sine-model parameters,

(1-2/)
Ly & (15)

p>=b>=1.359. Gi is the Ginzburg number for the fluid of interest and we setm, =1 in this

study. v,, d,, and Gi are the system-dependent parameters.
Finally, the crossover expression for the Helmholtz free energy can be written in the form

A(T,v) = AA(7,@) — AvP,(T) + A, (T) + 4,(T) —Inv, — K(7*) (16)
where, the critical part AA is written as
AA(T.9)=A4"(7,9)- A" (T.0)~In(@ + 1)+ P R (7.0) (17)
K(t*) = %azorz Y —1)+ % a, T (YA ) (18)
The xLF EOS can be obtained by differentiation of Eq. (16) with respect to volume
P(T,v):—(a—Aj _RT) v (MEP)) 5y Yee [ KD (19)
v T voc Vc a¢ T vc a¢ T

The crossover function Y asymptotically close to the critical point renormalizes AT and Av in
accordance with Eqgs. (12) and (13), so giving the correct non-analytical asymptotic behavior of real
fluids in the critical region. Far away from the critical point the crossover functionY— 1,7 — AT
and @ — Av, and Eq. (16) is reduced to the classical Helmholtz free energy Eq. (9)

The second order is also calculated by the thermodynamic relations as follows;
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3. Results and Discussion
For one-component fluids, the XQLF EOS contains four sets of system-dependent parameters: (1)

the classical parameters, 7' ", P and p*' (2) the crossover parameters, Gi, v,andd,; (3) the critical
shifts of fluids, A7 andAv,; (4) kernel term parameters, a,,anda,, . Since the real parameters

T, and v, for one-component fluids are usually known, A7 and Av, are known too. As a

consequence, the XQLF EOS contains 8 adjustable parameters. We find these parameters for carbon
dioxide by fitting the XQLF EOS to their experimental saturated vapor pressure and saturated density
data. All experimental data are obtained from the NIST database [7].
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Comparisons of the xQLF EOS with experimental data and the classical QLF EOS are shown in
Figure 1 for carbon dioxide. From the figure we can see the over-prediction of the critical point with
the QLF approach, compared to the excellent agreement obtained with the xQLF EOS. With the xQLF
EOS we are able to achieve excellent agreement with experimental data both in the critical region and
at low temperatures and pressures.

4. CONCLUSION

A crossover lattice fluid (xQLF) EOS is developed. The classical lattice fluid (QLF) EOS fails to
reproduce the non-analytical, singular behavior of fluids in the critical region. Through the
incorporation of a crossover function into the LF EOS, which exhibits classical behavior in the critical
region rather than the non-analytical, singular behavior seen in real fluids we are able to provide an
accurate description of the whole phase diagram using XxLF EOS. The results presented here for
selected carbon dioxide are seen to be in excellent agreement with experimental data both near to and
far from the critical region.

References

[1] I.C. Sanchez, R.H. Lacombe, J. Phys. Chem., 80 (1976) 2352-2362.

[2] S.S. You, K.P. Yoo, C.S. Lee, Fluid Phase Equilibria, 93 (1994) 193-213.

[3] M.S. Shin, H. Kim, Fluid Phase Equilibria, 246 (2006), 79-88.

[4] K. Gauter, R.A. Heideman, Ind.Eng.Chem.Res., 39 (2000) 1115-1117.

[5] S.B. Kiselev, Fluid Phase Equilibria, 147 (1998) 7-23.

[6] S.B. Kiselev, D.G. Friend, Fluid Phase Equilibria, 162 (1999) 51-82.

[7] E.W. Lemmon, M.O. McLinden, D.G. Friend, NIST Standard Reference Database Number 69,
National Institute of Standards and Technology, Gaithersburg MD, 20899, 2001.

10 320
* Bo +
8 — xQFECS 30
o ©
20|
£ <
-~ -
o
4
260 |
2
240+
0 . T T 0 , : . . ; ! :
0 5 10 5 2 b3 20 260 20 %0 20 0 10 20
dersiy/ ol L TIK Density /mol L
(a) (b) (©)

Figure 1. The PpT data (a), saturated density data (b), vapor pressure data (c for carbon dioxide with
predictions of the QLF and xQLF EOS.
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