Synthesis of Y₂O₃:Eu nanoparticle phosphor by o/w emulsion-assisted flame spray pyrolysis

<u>송신애</u>, 정경열¹, 정윤섭², 박승빈^{*} 한국과학기술원; ¹공주대학교; ²중소기업진흥공단 (SeungBinPark@kaist.ac.kr^{*})

O/W Emulsion-assisted Flame Spray Pyrolysis(O/W EFSP) was developed to synthesis of nanoparticles. Conventional flame spray pyrolysis has difficulty in preparation of multi-component nanoparticles and nanoparticles having desired phase owing to gas-to-particle and high temperature. However, at O/W EFSP, the oil droplet in o/w emulsion function as a detonator in flame, the nanoparticles were synthesized through breaking of water droplet. Not from gas-to-particle but from droplet-to-particle, the nanoparticles were synthesized at relatively low temperature. And, O/W EFSP has very high productivity and economical efficiency.

Eu-doped Y_2O_3 phosphor is well known as a good red phosphor for application in displays such as PDPs, FEDs, projection televisions and FL. At this study, Y_2O_3 :Eu nanoparticles phosphor was synthesized by O/W EFSP. The crystal structure and the morphology of Y_2O_3 :Eu nanoparticles synthesized by O/W EFSP were was investigated by XRD and SEM. Photoluminescence measurements were performed with a spectrophotometer using a Xe lamp excitation source.