A simple chemical route for the synthesis of γ -Fe₂O₃ nano-particles dispersed in organic solvents via an iron-hydroxy oleate precursor

<u>박조용</u>, 이윤조, 임대재¹, 전기원* 한국화학연구원 석유대체연구센터; ¹(주)이맥솔루션 (kwjun@krict.re.kr*)

A simple chemical route is developed to generate maghemite (γ -Fe₂O₃) nano-particles, dispersed in organic solvents via a thermal decomposition of an iron-hydroxy oleate precursor. An iron-hydroxy oleate precursor was generated by chemical reaction of mixed iron nitrate and oleic acid in ethanol with 30% NH₃ solution. The precursor thus obtained was suspended in hexadecane and then mixed with necessary quantity of oleic acid at room temperature with constant stirring and is further heated to 220°C/2h to convert it in to γ -Fe₂O₃ nano-particles. The iron-hydroxy oleate molecular precursor and γ -Fe₂O₃ nano-particles are characterized using various techniques like DTA/TGA, IR, XRD, Vibrating sample magnetometer (VSM), TEM, and EDAX. The characterization results indicated that γ -Fe₂O₃ nano-particles (size 6–15 nm) are obtained by a thermal decomposition of an iron-hydroxy oleate precursor and possess spherical shape. These particles remained dispersed state in organic solvent due to capping action of oleate molecules. The results are quite reproducible and γ -Fe₂O₃ nano-particles can also be dispersed in another organic solvent.