Performance of Vanadia-Titania Xerogels in the Selective Catalytic Oxidation of H₂S

<u>조달래</u>, Bineesh Kanattukara Vijayan, 김문일, 이진우, 박대원* 부산대학교 (dwpark@pusan.ac.kr*)

 V_2O_5 -TiO₂ catalysts with V_2O_5 contents ranging from 6 to 18 wt% were obtained by calcination at 773 K of xerogels prepared by a nonhydrolytic sol-gel route from VOCl₃, TiCl₄, and iPr_2O . These materials were characterized by X-ray diffraction, micro-FT-Raman spectroscopy, static 51V NMR, SEM, N₂ physisorption, temperature-programmed desorption of ammonia (NH₃-TPD), and temperature-programmed reduction by H₂ (H₂-TPR). In all cases mesoporous solids were obtained with specific surface areas up to 87 m² g⁻¹. Up to a critical V₂O₅ loading (between 10 and 12 wt%), all the vanadium was highly dispersed in the form of monomeric vanadyl and polymeric vanadate species, whereas for higher loadings V₂O₅ crystallites also formed. The catalytic properties of these materials were evaluated in the selective catalytic oxidation of H₂S. The conversion of H₂S was over 92% at 220-300°C with the reactant composition of H₂S/O₂/H₂O/He = 5/2.5/20/72.5 and GHSV = 30,000 h⁻¹. The yield of solid products, ammonium thiosulfate and elemental sulfur was close to 100%, and there was no considerable amount of SO₂ emission.