Enzymatic hydrogen production using crosslinked enzyme in PEC system

<u>배상현</u>¹, 강준원¹, 심은정², 윤재경^{3,4}, 주현규^{3,4,*} ¹연세대학교 환경공학과; ²충남대학교 화학과; ³한국에너지기술연구원 기후변화기술연구본부; ⁴대기환경연구센터 (hkjoo@kier.re.kr*)

In this study we have performed an improved hydrogen production using immobilized enzymes on the TiO_2 surface which is enhanced by heterobifunctional crosslinker containing an amine reactive N-hydroxysuccinimide ester and a photoactivatable nitrophenyl azide in PEC system. We consider crosslinked enzyme is more advantageous process than an existing physical adsorption technique owing to forming chemical bonding between enzyme and cathode, and the mentioned process actually revealed much better H₂ production rate. To characterize these electrodes various methods such as AFM and confocal microscopy have been applied. As a result of applying 1.5V solar cell as a external bias and crosslinked enzyme, hydrogen was evolved from the enzymatic PEC system, recording more than 200 µmol of H₂ / (hr×cm², ATTE) under the Xe lamp.