Novel regenerable potassium-based dry sorbents for CO₂ capture at low temperatures

의수출, 이수재, 권용목, 박용희, 류청걸¹, 김재창* 경북대학교; ¹한국전력공사 (kjchang@kun.ac.kr*)

A potassium-based dry sorbent (KZrI) was developed for CO_2 capture at a low temperature range between 50°C and 200°C. Absorption and regeneration properties of this novel regerenable potassium-based dry sorbent were measured in a fixed-bed reactor during multiple absorption/regerenation at 130–200°C). The total CO_2 capture capacity absorption (91.6mg CO_2/g sorbent) of the KZrI sorbent was maintained during the multiple CO_2 absorption/regerenation cycles. The XRD patterns and FT-IR analyses of the sorbent after CO_2 absorption showed the KHCO₃ phase only except for the ZrO_2 phase during regerenation, even at a low temperature (130°C). The KZrI sorbent developed in this study showed excellent characteristics in CO_2 absorption and regerenation in that it satisfies the requirement of a large amount of CO_2 absorption (91.6mg CO_2/g sorbent) and the complete regerenation at a low temperature condition (1atm, 150°C) without deactivation.