이리듐계 청색인광 물질 합성 및 발광특성 분석 <u>유홍정</u>, 박관휘, 정원근, 김성현^{*} 고려대학교 화공생명공학과 (kimsh@korea.ac.kr^{*})

Synthesis and luminescence of deep blue phosphorescent iridium(III)-based material

<u>Hong Jeong Yu,</u> Kwan Hwi Park, Won Keun Chung, Sung Hyun Kim^{*} Department of Chemical and Biological Engineering, Korea University (kimsh@korea.ac.kr^{*})

<u>서론</u>

대표적인 청색인광물질인 FIrpic (Iridium(III)bis[2-(2',4'- difluorophenyl)pyridinato-N,C²]picolinate)과 불소화된 ppy 리간드 구조를 기본으로 하는 이리튬 화합 물은 흔희 알려지고 쓰이고 있으나 FIrpic의 경우 발광색이 스카이블루(sky blue)영역이 고 특히 두 번째 세 번째 peak 이 매우 넓은 영역을 보여 색순도의 y값이 커지는 단점 등을 보인다.[1]

프린스톤 대학과 사우스 캘리포니아 대학 그룹에서 UV영역대에 가까운 청색인광 물질 인 Ir(pmb)₃ (Iridium(III) Tris(1-phenyl-3-methylbenzimidazolin-2-ylidene- *C,C2*⁺)) 을 합성하였다.[2] 이 합성 과정에서 결과물의 이성질체(fac-, mer-isomer)마다 그 발 광 특성이 다르게 나타나며 탁월한 발광특성을 보이는 이성질체의 수율이 특히 낮은 것 으로 발표 되었다. 각각의 이성질체를 합성하여 발광 특성을 살펴 보고 소자제작을 통해 전기발광 특성에 대해 알아보고자 한다.

<u>실험</u>

(1) 1-Phenyl-1H-benzimidazole 합성 [3]

250ml 플라스크에 Cul (644 mg, 10 mol %), 1,10-phenanthroline (1.22 g, 20 mol %), benzimidazole (4.78 g,40 mmol), Cs2CO3 (19.3 g, 59.2 mmol)을 넣고 질소분위 기로 만들어 주었다. Iodobenzene (6.87 g, 33.7 mmol), DMF (35 mL) 를 첨가 하였 다. 110℃에서 24시간 교반하며 reflux 시킨 후 상온으로 식혀 실리카겔 컬럼 크로마토 그래피를 실시하여 액체 물질을 얻은 후 진공오븐에서 3시간 정도 건조하여 화합물을 얻었다. (yield : 90%)

(2) 1-Phenyl-3-methylbenzimidazolium iodide 합성 [4]

1-Phenyl-1H-benzimidazole 과 Idomethane 을 1:1 비율로 toluene에 첨가 하여 130℃에서 6시간 가열한 후 상온으로 식혀 흰색 침전물을 얻는다. 이 침전물을 filtration 하고 toulene으로 씻어 진공오븐에서 3시간 정도 건조하여 화합물을 얻는다. (yield : 90%)

(3) [(pmb)₂IrCl]₂ 합성 [2]

250ml 플라스크에 silver(I) oxide (5.590 g, 24.1 mmol), 1-phenyl-3-methylbenzimidazolium iodide (6.756 g, 20.1 mmol), iridium trichloride

hydrate (1.50 g, 5.02 mmol)를 2-ethoxyethanol 50ml 에 녹인다. oil bath 내에서 120℃로 24시간 질소분위기에서 알루미늄 호일을 사용하여 외부 빛을 차단시키면서 교 반시킨다. 결과물을 상온으로 식히고 감압 증류시킨 다음 플레쉬 컬럼 크로마토 그래피 로 silver salt를 제거하고 에탄올을 첨가하여 노란색의 침전물을 얻는다. 침전물을 filtration 하고 에탄올로 씻어 진공오븐에서 3시간 정도 건조하여 화합물을 얻는다.

(4) Iridium(III) Tris(1-phenyl-3-methylbenzimidazolin-2-ylidene-*C*,*C*2¢), Ir(pmb)₃ 합성 [2]

250 mL 플라스크에 silver(I) oxide (0.0886)0.382 mmol). g, 1-phenyl-3-methylbenzimidazolium iodide (0.225 g, 0.669 mmol), [(pmb)2IrCl]2 (0.412 g, 0.319 mmol)를 1,2-dichloroethane 50ml 에 녹인다. oil bath 내에서 120℃ 로 24시간 질소분위기에서 알루미늄 호일을 사용하여 외부 빛을 차단시키면서 교반시킨 다. 결과물을 상온으로 식히고 감압 증류시킨 다음 플레쉬 컬럼 크로마토 그래피로 silver salt를 제거하고 filtration 하면 흰색 결과물을 얻는다. 이 결과물에는 meridinal, facial 이성질체가 3:1 비율로 섞여있다. 컬럼 크로마토그래피를 이용 mer-Ir(pmb)3 과 fac-Ir(pmb)₃로 분리 한다.

결과 및 토론

1. PL 특성

두 가지 이성질체를 갖는 Ir(pmb)₃ 는 각 이성질체 별로 다른 발광 특성을 보이는데 이 중 fac-isomer의 경우가 좀 더 deep blue의 빛을 보여 주면 mer-isomer의 경우는 장 파장 역역대의 추가적인 peak 이 존재한다.

Figure 1. UV 흡광도 와 PL 특성

2. 소자 특성

Ir(pmb)₃ 물질의 밴드갭 자체가 크고 HOMO 레벨이 높기 때문에 host-guest 구조의 소자를 제작하는 데에서 host 물질의 선정이 힘들다. 이때 밴드갭 크기만으로 볼 때 Ir(pmb)₃ 의 밴드갭 크기 이상인 물질인 UGH2 와 CBP 를 사용하고 HTL, 즉 EBL 물질을 Ir(pmb)₃ 의 HOMO 레벨에 맞추어 전자가 발광층 내부에서 정공과 regeneration 될 수 있게 TCTA를 선정하였다. Scheme. 1 은 제작된 소자구조를 보여주며 host 물질에 따라 발광 특성이 변화하는 것을 볼 수가 있다. 이는 CBP의 경우가 UGH2 보다 밴드갭 크기가 작고 HOMO, LUMO 레벨이 높게 위치하기 때문에 400nm 보다 500nm 파장대의 발광 peak 이 더 크게 나타나는 것으로 보인다.

Scheme 1. Host 물질로 UGH2 와 CBP 를 사용한 소자 구조.

전기적 특성을 살펴 보았을 때 역시 CBP를 host 물질로 사용한 소자의 경우 turn on voltage 가 약 7V로 UGH2의 경우 (약 10V)보다 낮았고 발광 세기 역시 약 2000cd/m2 으로 UGH2 보다 20배 정도 더 높은 것을 볼 수 있다. 이는 밴드갭이 guest 물질보다 더 큰 UGH2의 경우가 dopant로의 energy transfer가 더 잘 일어나 dopant인 Ir(pmb)₃ 에서의 발광(400nm)을 볼 수 있지만 TCTA와의 HOMO LUMO 레벨의 차이가 적은 CBP의 경우에는 dopant 로의 energy transfer가 적게 일어나고 전자 및 정공의 이동이 발광층 외부로 이어져 전기적 흐름은 좋아 보이나 발광적인 측면에서 500nm 초반대의 발광을 보이는 것으로 파악된다.

Figure 3. 전기 발광 특성 (파장대별)

결론

청색 인광물질로 연구되었던 Ir(pmb)₃ (Iridium(III) Tris(1-phenyl-3-methyl-benzimidazolin -2-ylidene-*C,C2*'))을 합성 하여 각 이성 질체 별로 광 및 전기 발광 특성을 살펴 보았 다. 두 가지 이성질체(fac-, mer-isomer) 중 fac-isomer 의 경우 좀더 deep blue의 발 광 특성을 보이는 것을 확인하였으면 소자 제작 시 host 물질을 CBP 와 UGH2 물질로 변화시켜 가면서 제작해 보았을 시 밴드갭의 크기가 큰 UGH2 물질의 경우 Ir(pmb)₃로 의 energy transfer가 잘 일어나 deep blue의 발광특성을 보여 줬으나 energy level의 차이로 인한 소자의 전기적 특성과 발광 세기는 낮게 나타났다. 반면 CBP 물질의 경우 는 밴드갭 크기가 Ir(pmb)₃보다 작아서 둑효 transfer에 의한 dopant에서의 발광 보다는 큰 파장대의 발광을 보였고 HTL 층 물질인 TCTA 와의 energy level 차이가 작아 guest 물질로의 energy transfer 보다는 HTL층으로 전자 및 전공이 이동하여 소자의 전기적 흐름이 더 좋은 것을 확인 할 수 있었다.

References

 M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R. Forrest, Appl. Phys. Lett. 74 (1998) 4.
T. Sajoto, P. I. Djurovich, A. Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, R. J. Holmes, S. R. Forrest, Inorg. Chem. 44 (2005) 7992.
S. Harkada, F. Patabard, A. Zarf, C. Frahmann, T. Piannaisa, A. Managar, M.

[3] S. Harkal, F. Rataboul, A. Zapf, C. Fuhrmann, T. Riermeier, A. Monsees, M. Beller, Adv. Synth. Catal. 346 (2004) 1742

[4] Z. Lu, R. J. Twieg, S. D. Huang, Tetrahedron Letters. 44 (2003) 6289

화학공학의 이론과 응용 제14권 제2호 2008년