On the Photophysical and Electrochemical Studies of Dye-Sensitized Solar Cells

Kuo-Chuan Ho^{a,b,*}

^aDepartment of Chemical Engineering, and ^bInstitute of Polymer Science and Engineering National Taiwan University, Taipei, Taiwan 10617

*E-mail: kcho@ntu.edu.tw; Tel: +886-2-2366-0739

10/23, 2008

Solar cells

Type Material		Conversion	efficiency (%)	Fastures
туре	Material	Cell	Module ^a	reatures
Since 1954	Single crystalline	24	17~18	High efficiency/ matured technology
	Polycrystalline	18	14~15	Excellent for mass-production
Si solar cell	HIT⁵	21	17	Excellent in efficiency and temperature property
	Amorphous thin film	13	9~10	Low efficiency
	Poly/micro crystalline thin film	17	7~16 ^c	Next-generation solar cell
Since 1956	GaAs	18~30	> 25	For specific use in satellites
Compound solar cell	CdTe	17	11~16 ^c	For consumer use
	CulnSe ₂	19	11~18 ^c	Promising low-cost thin film solar cell
Since 1970 Dye-sensitized TiO ₂ solar cell		10~11	7	Improve efficiency and high-temperature stability, scale up production
Org	anic solar cell	6~7 ^c	-	Improve stability and efficiency

^a One module is a panel consisting of multiple solar cells.

 $^{\mbox{\tiny b}}$ Heterojunction with intrinsic thin layer.

^c Data under R&D stage.

Reference:

KRI Report No. 8 of Phase XVI, KRI, Inc., Japan (2005). Nature, 1 , 338-3 (2001).

Schematic of a Dye-Sensitized TiO₂ Solar Cell

DSSCs technology

Advantages of the DSSC:

- Low cost fabrication of titania cells than that of silicon.
- Compatibility with flexible substrates and a variety of appearances.
- It can be optically transparent or opaque and used as "photovoltaic window."

Disadvantages of the DSSC:

- Low energy conversion efficiency
- Leakage of liquid electrolytes
- Long-term instability

http://www.oja-services.nl/iea-pvps/ar00/aus.htm http://pubs.acs.org/email/cen/html/07130 135555.h tml

Fabrication of TiO₂ electrodes

- The TiO₂ precursor was prepared by sol-gel process. Titanium (IV) isopropoxide was added to a 0.1 M nitric acid solution with constant stirring and heated to 85 $^{\circ}$ C simultaneously for 8 h.
- When the mixture was cooled down to room temperature the resultant colloid was filtered and the filtered colloid was heated in an autoclave at 240 °C for 12 h in order to allow the growth of the TiO₂ particles.
- The TiO₂ colloid was concentrated to 13 wt% and finally 30 wt% (with respect to TiO₂) of PEG (MW=20 000) was added to prevent the film from cracking during drying.
- The TiO₂ paste was deposited using the glass rod method on a conducting fluorine-doped tin oxide (FTO) glass.
- TiO₂ thin film was dried in air at room temperature. The film was then heated to 500 $^{\circ}$ C at a rate of 10 $^{\circ}$ C/min and maintained for 30 min before cooling to room temperature.
- The thickness of the TiO_2 film can be controlled by repeating the above process.

10/23, 2008

Dye Adsorbed on TiO₂

10/23, 2008

Configuration of a DSSC

The dye-sensitized TiO_2 photoanode and the redox mediator are investigated in this study.

Experimental conditions

- Dye-sensitized TiO₂ photoanode Dye sensitizers
- \succ TiO₂ colloid was prepared by \succ Ruthenium dyes: N3, CYC-B1 hydrothermal method in a autoclave at 240℃.
- \succ TiO₂ film was scraped onto a FTO substrate by a glass rod and then was sintered at 450°C.
- > It was immersed into the solution containing 3×10⁻⁴ M sensitizers for at least 12 h.

Mediators

0.5 M Lil, 0.05 M I₂, and 0.5 M 4tert-butylpyridine in acetonitrile.

- Ti > Organic dyes: carbazole dyes; thienyl dyes (S1, S2, S3, and S4); thienylfluorene dyes (FLDye1), all obtained from Prof. Jiann T'suen Lin at Institute of Chemistry, Academia Sinica.
 - □ Pt counter electrode
 - Pt film was sputtered on a FTO glass with a thickness of 0.1 μ m.

Light source

450 Xe lamp + IR filter + AM 1.5 simulated filter.

Mechanism

Transient photovoltage

TiO₂ / N3 / LiClO₄ in CH₃CN / Pt

□ TiO₂ / N3 / Lil in CH₃CN / Pt

□ The electron lifetimes (τ_R) increase from 0.6 ms to about 18 ms when LiI was introduced.

Transient photocurrent (Cont'd)

□ TiO₂ / N3 / Lil in CH₃CN / Pt

10/23, 2008

 \rightarrow For a 20 μ m TiO₂ film, D_e = 1.8×10⁻⁴ cm²/s in 0.5 M Lil solution.

 \succ The effective diffusion length (L_a) of photoinjected electron in a TiO₂ film can be calculated from the electron lifetime and the apparent diffusion coefficient as:

$$L_e = \sqrt{D_e \tau_R}$$

$\rightarrow L_{e} = 18 \ \mu m.$

↑ Max. value in Lil solution.

13

Incorporation with dyes other than N3

A survey of organic dyes

Coumarin dyes	J _{sc} (mA cm ⁻²)	V _{oc} (mV)	Efficiency (%)	Fill factor	Ref.
	12.9	500	4.1	0.64	H. Arakawa et al.
	14.0	600	6.0	0.71	H. Arakawa et al.
	15.1	470	3.5	0.50	H. Arakawa et al.
	16.1	600	6.7	0.69	H. Arakawa et al.

A survey of organic dyes (Cont'd)

Coumarin dyes	J _{sc} (mA cm ⁻ 2)	V _{oc} (mV)	Efficiency (%)	Fill Factor	Ref.
	12.1	660	5.8	0.73	H. Arakawa et al.
	13.5	710	7.4	0.77	H. Arakawa et al.
Страния (С. 1997) Страния (С. 1997) NKX-2997	14.3	700	6.4	0.64	H. Arakawa et al.

Squaraine dyes	J _{sc} (mA cm ⁻²)	V _{oc} (mV)	Efficiency (%)	Fill Factor	Ref.
$\underset{\text{HOOC}}{\bigoplus} \xrightarrow{q_{0}} \underset{0_{0}}{\bigoplus} \underset{0_{0}}{\bigoplus} \underset{q_{0}}{\bigoplus} \underset{q_{0}}{\bigoplus} \underset{q_{0}}{\bigoplus}$	3.52	530	1.04	0.534	S. Das et al.
	3.94	580	1.25	0.525	S. Das et al.
$ \underbrace{ \begin{array}{c} & & \\ &$	3.78	600	1.43	0.605	S. Das et al.
$\underset{\substack{\text{HOOC}\\\text{HOOC}}{\overset{\text{Ref}}{\longrightarrow}} \underset{\substack{\text{Call}_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}}}{\overset{\text{Ref}}{\longrightarrow}} \underset{\substack{\text{Call}_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}}}{\overset{\text{Ref}}{\longrightarrow}} \underset{\substack{\text{Call}_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}}}{\overset{\text{Ref}}{\longrightarrow}} \underset{\substack{\text{Call}_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}}}{\overset{\text{Ref}}{\longrightarrow}} \underset{\substack{\text{Call}_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}}}{\overset{\text{Ref}}{\longrightarrow}} \underset{\substack{\text{Call}_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}}}{\overset{\text{Ref}}{\longrightarrow}} \underset{\substack{\text{Call}_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}}}{\overset{\text{Ref}}{\longrightarrow}} \underset{\substack{\text{Call}_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}}}{\overset{\text{Ref}}{\longrightarrow}} \underset{\substack{\text{Call}_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}}}{\overset{\text{Ref}}{\longrightarrow}} \underset{\substack{\text{Call}_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}}}{\overset{\text{Ref}}{\longrightarrow}} \underset{\substack{\text{Call}_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}\\\alpha_{\alpha}}}{\overset{\text{Ref}}{\longrightarrow}} \underset{\substack{\text{Call}_{\alpha}\\\alpha_{$	5.92	640	2.08	0.526	S. Das et al.

10/23, 2008

17

A survey of organic dyes (Cont'd)

Indoline dyes	J _{sc} (mA cm ⁻²)	V _{oc} (mV)	Efficiency (%)	Fill Factor	Ref.
of about the	18.50	693	8.00	0.624	T. Horiuchi et al.
Hemicyanine dyes	J _{sc} (mA cm ⁻²)	V _{oc} (mV)	Efficiency (%)	Fill Factor	Ref
$() \xrightarrow{S}_{H^{-}H^{-}H^{-}H^{-}H^{-}H^{-}H^{-}H^{-$	13.9	520	5.2	0.57	H. Arakawa et al.
	10.5	448	3.5	0.58	H. Arakawa et al.
CHARLON NO HC3	12.7	499	4.4	0.56	H. Arakawa et al.

Hemicyanine dyes	J _{sc} (mA cm ⁻²)	V _{oc} (mV)	Efficiency (%)	Fill Factor	Ref.
$() \\ () \\ () \\ () \\ () \\ () \\ () \\ () \\$	8.9	474	3.1	0.59	H. Arakawa et al.
	6.1	465	2.0	0.55	H. Arakawa et al.
	7.6	452	2.6	0.59	H. Arakawa et al.

10/23, 2008

A survey of organic dyes (Cont'd)

Donor-acceptor	J _{sc} (mA cm⁻²)	V _{oc} (mV)	Efficiency (%)	Fill Factor	Ref.
NKX-2553	10.40	710	5.5	0.74	H. Arakawa et al
	9.90	740	5.4	0.74	H. Arakawa et al
HXXXXXX	12.90	710	6.8	0.74	H. Arakawa et al
NKX 2500	12.5	680	5.9	0.69	H. Arakawa et al
10/23, 2008			·		20

10/23, 2008

Ru dyes	J _{sc} (mA cm ⁻²)	V _{oc} (mV)	Efficiency (%)	Fill Factor	Ref
N3	18.2 (16.8)	720 (865)	10.0 (11.0)	073	M. Gratzel et al.
N719	17.73	846	11.2	0.75	M. Gratzel et al.
N712	13.0	900	8.2	0.700	M. Gratzel et al.
Black dye	20.53	720	10.4	0.704	M. Gratzel et al.

10/23, 2008

21

A survey of organic dyes (Cont'd)

	Ru dyes	J _{sc} (mA cm ⁻²)	V _{oc} (mV)	Efficiency (%)	Fill Factor	Ref
K-8	trat	18.0	640	8.6	0.75	M. Gratzel et al.
Z-907		15.5	756	8.2	0.702	M. Gratzel et al.
Z-910	- Ana	17.2	777	10.2	0.764	M. Gratzel et al.
K-19	- alonom	14.61	711	7.0	0.671	M. Gratzel et al.

Ru dyes	J _{sc} (mA cm ⁻²)	V _{oc} (mV)	Efficiency (%)	Fill Factor	Ref
HRS-1	20.05	683	9.5	0.69	S. Yanagida et al.
Z-955	16.37	707	8.0	0.69	M. Gratzel et al.
Zn-3	13.0	610	5.6	0.70	M. Gratzel et al.
10/23, 2008					23

Carbazole based dyes

10/23, 2008

Electrochemical and spectral properties

Dye	abso	rption	E ₀₋₀	LUMO	НОМО	-2	
	λ _{max} /nm	εatλ _{max} /M ⁻¹ cm ⁻¹	/eV	/V vs. NHE	E _{ox} /V vs. NHE	-1.5 — CB	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
CB1	436.5	31713	2.49	-1.05	1.44	- E V§ -0.5 -	
CB2	416.2	35766	2.56	-1.06	1.50	(V) 0 -	
CB3	429.7	24827	2.53	-1.05	1.48	0.5 —	
CB4	394.0	32680	2.49	-1.05	1.44	1	
CB5	417.2	33400	2.51	-1.05	1.46	1.5 —	
CB6	394.4	23966	2.39	-1.33	1.06	_	- 661 662 663 664 663

Energy levels:

 $\Box E_{LUMO} = oxidation \text{ potential } (E_{OX}) - excited energy (E_{0-0}) \\ \approx E_{HOMO} - E_g$

10/23, 2008

Cell performance

25

Photoelectrochemical properties

Samples	τ _R (ms)	D _e (cm ² /s,*10 ⁻⁴)	
CB1	2.02	7.5	
CB2	1.81	8.8	
CB3	1.81	12.1	
CB4	2.99	11.8	
CB5	2.52	11.3	
CB6	1.92	11.8	

 τ_R : Electron lifetime; D_e : diffusion coefficient of electron²⁷

Thienyl dyes

Benzo(thia/selena)diazole chromophores.

Electrochemical and spectral properties

10/23, 2008

29

Performance of S1 S4

10/23, 2008

Lifetime of electrons

	τ _R (Ι	ms)	(mc)	L _e
Dye	LiClO ₄	Lil	— τ _C (ms)	(µm)
S1	0.28	6.54	4.68	10.8
S 2	0.28	5.73	4.10	10.2
S 3	0.23	1.31	0.76	4.9
S4	0.22	1.03	0.63	4.3
N3	0.60	17.65	9.56	17.8

 \succ $\tau_{\rm R}$: lifetime of the photoinjected electrons.

 \succ $\tau_{\rm C}$: time constant for electron collection.

10/23, 2008

Thienylfluorene (FL Dye series)

Table 1	Optical,	redox an	d DSSC	performance	parameters	of the dyes ^{a,b}	
---------	----------	----------	--------	-------------	------------	----------------------------	--

Dye	$\lambda_{abs}/nm (s/M^{-1} cm^{-1})$	$\lambda_{\rm em}/{\rm nm}~(\Phi_{\rm F}~(\%))$	$E_{\rm ox} (\Delta E_{\rm p})/{\rm mV}$	Voc/V	$J_{\rm SC}/{\rm mA~cm^{-2}}$	ff	n (%)
9	421 (52 900)	538 (0.28)	509 (82)	0.65	12.47	0.65	5.23
10	421 (46 300)	536 (0.19)	451 (109)	0.57	7.59	0.67	2.86
11	425 (54 500)	537 (0.33)	462 (66)	0.60	8.38	0.67	3.35
12	423 (95 500)	512 (0.26)	447 (59), 613 (61)	0.61	9.83	0.65	3.89
13	423 (159 200)	472, 504 (0.37)	437 (65), 569 (70)	0.61	9.81	0.64	3.80
N3				0.62	13.98	0.63	5.50

Chem. Commun., 098 (2005)

Samples	Isc(mA)	Jsc(mA/cm ²)	Voc(V)	η (%)	FF
FL Dye1	4.24	16.96	0.689	7.19	0.615
N3	4.51	18.04	0.741	7.87	0.589

10/23, 2008

The structure of FE Dye series

Absorption spectra of FE Dyes

10/23, 2008

Performances of FE Dyes

Sample	J _{SC} (mA/cm²)	V _{oc} (V)	η (%)	FF
FE Dye1	16.80	0.639	6.26	0.583
FE Dye2	14.72	0.633	5.86	0.629
FE Dye3	15.56	0.629	5.84	0.596
FE Dye4	8.32	0.587	3.21	0.657
FE Dye5	11.52	0.588	4.00	0.592
FE Dye6	12.76	0.649	4.98	0.601
N3	18.04	0.741	7.87	0.589

Absorption Spectra of CYC Dyes

Theories and Applications of Chem. Eng., 2008, Vol. 14, No. 2

Spectroscopic Properties & Band Structures of CYC B1 & N3

	Absorption π - π * π	coefficient (* $-\pi$ * (or 4d-	10 ³ M ⁻¹ cm ⁻¹) π *) 4d- π *	E _g (eV)	HOMO (eV)	LUMO (eV)
N3	51.1 (311)	15.2 (385)	14.5 (530)	1.68	5.52	3.84
CYC-B1	35.8 (312)	46.4 (400)	21.2 (553)	1.58	5.10	3.52
	-20 -25 -30 -35 -40 -45 -50 -55 -60 -85 -70 -75 -80 -85	-25 -20 -15 -10 -05 TIO ₂ 0 +05 +10 +15 +15 +20 +25 +30 +35 +40	CYC-B1	n. Int. E	d., 5, 5822	2 (2006)
						20

Cell Performance of CYC Dyes

10/23, 2008

AC impedance of N3 and CYC Dyes

TiO₂ Thickness Effect for CYC B1 and N3

Active area: 0.25 cm²

TiO₂ paste: 20 μ m TiO₂ + 20,000 PEG

Transient Photovoltage

Conclusions (1)

- 1. The transient photovoltage and photocurrent are used to investigate the electron transport and lifetime in dye-sensitized TiO_2 film and help to explain the cell performance.
- 2. The organic sensitizers that contain diphenylamine donors and cyano acrylic acid acceptors bridged through a phenylene linker and a chromophor ensure charge-transfer and facilitate charge separation.
- 3. When the phenylene linker (S1 and S2) is replaced by a thiophene unit (S3 and S4), the improvements in donor property and coplanarity causes a red shift in absorption spectrum. However, the quantum efficiency is decreased.

10/23, 2008

45

Conclusions (2)

- 4. The best organic dye tested so far featuring thienylfluorene conjugation, diarylamine donors and 2-cyanoacrylic acid acceptors.
- 5. Among many novel organic dyes being synthesized at Academia Sinica so far, the best dye (FL Dye1) performs at least 90 % as good as that of N3 in terms of cell efficiency.
- 6.A new dye CYC-B1 with the highest absorption coefficient known so far for Ru-based photosensitizers. Furthermore, CYC-B1 reported here is a representative of ruthenium complex with high current density and conversion efficiency.
- 7.It may be possible to find new metal complex sensitizers with higher conversion efficiency by modifying one of the anchoring ligands.

Acknowledgements (1)

We thank the following researchers for the help in this study

Prof. Jiann T'suen Lin

Prof. Chun-Guey Wu

Dr. Marappan Velusamy

Dr. K. R. Justin Thomas

Dr. Ying-Chan Hsu

Mr. Kun-Mu Lee

Mr. Jian-Ging Chen

Mr. Joseph Hwang

Mr. Chia-Yuan Chen

10/23, 2008

Acknowledgements (2)

- We thank Professor King-Chuen Lin of the Department of Chemistry at National Taiwan University for the kind help in offering the access to laser equipments.
- We thank CTCI Foundation and ITRI and for providing the research fund.

Thank you for your attention!

10/23, 2008