에너지 절약형 증류탑의 상용화

정수영, <u>김영한^{*}</u>, 이문용¹ 동아대학교 화학공학과 ¹영남대학교 디스플레이화학공학과 (yhkim@mail.donga.ac.kr^{*})

Commercialization of Energy-Efficient Distillation System

Su Yeong Jeong, <u>Young Han Kim</u>^{*}, Moon Yong Lee¹ Dept. of Chem. Eng., Dong-A Univ. ¹Dept. of Chem. Eng., Yungnam Univ. (yhkim@mail.donga.ac.kr^{*})

<u>1. 서론</u>

화석연료의 과다 사용에 따른 지구온난화의 문제가 차츰 심각해지고 있어, 자동차용 연료를 화석연료에서 지속가능한 바이오 연료인 에탄올로 대체하려는 움직임은 이미 상 당한 수준에 이르렀다. 이렇게 자동차용 에탄올 수요가 급속히 증대되고 있으나 에탄올 제조공정에서의 에너지 사용량 절감을 위한 연구는 지난 10년간 새로운 농축제를 개발하 는 몇몇의 연구만이 발표된 바 있다[1,2]. 자동차 연료로 사용하는 바이오 연료인 에탄올 에 함유된 수분의 함량은 1 vol.% 미만을 요구한다(ASTM D 4806). 에탄올과 물이 공비 혼합물을 형성하기 때문에 이러한 요구를 충족시키기 위해서는 에탄올 발효에서 얻은 저 농도 에탄올을 농축하는데 여러 방법 중 공비증류가 가장 보편적으로 사용되고 있으며 벤젠이나 톨루엔을 분리제로 사용하여 왔다[3]. 또 기존의 농축공정은 발효공정에서 얻은 저농도 에탄올을 1차 농축하여 공비점에 가까운 농축제품을 얻고 이를 다시 공비증류하 여 고농도의 에탄올을 생산하고 있다.

열복합 증류탑은 에너지 절감형 증류공정에 활용되는 증류방식이다. 이 분리벽탑은 정유공장의 방향족 회수탑에 최초로 적용한 것을 시작으로 하여 나프타 개질생성물의 분 리탑에 적용하여 30% 이상의 에너지 절감과 2배의 용량 증대 및 50 % 이상의 수율 증 대 결과를 얻은 것으로 보고되었다.

본 연구에서는 기존의 에탄올 농축공정을 개선하기 위하여 열복합 증류탑을 농축공정 에 도입함으로써 에탄올 농축공정에서의 에너지 사용량을 줄이는 방안을 제안하고자 한 다. 제안된 공정의 에너지 사용량을 기존의 농축공정에서의 사용량과 비교하여 에너지 절 감효과를 분석하고 새로운 증류공정을 다른 불균질계 증류공정에 활용할 수 있도록 설계 지침을 제안하고자 한다.

2. 기존 농축공정의 해석

공비혼합물의 경우 공비점을 서로 연결하여 구분된 증류영역이 있고 이러한 증류영역 을 벗어난 증류제품의 생산은 불가능하다. Fig. 1은 에탄올/물 계에 분리제인 벤젠을 혼 합하였을 때의 평형조성 분포를 나타낸 그림으로 평형 조성분포에서 에탄올/벤젠/물 시 스템이 3개의 서로 다른 증류 영역을 갖고 있음을 알 수 있고 Fig. 2에 이들 3 개의 증 류영역을 I, II 및 III으로 표시하였다. 또, 평형곡선으로부터 에탄올/벤젠/물 계에 1개의 3 성분 공비점과 3 개의 2 성분 공비점이 있음을 알 수 있다. 공비점을 중심으로 증류영역 을 나누면 3 개의 증류영역으로 구분되고 물과 에탄올이 각각 서로 다른 증류영역에 속 한다. 그러므로 일반적인 2 성분 증류공정으로 에탄올과 물의 분리가 불가능함을 보여준 다. 또 곡선으로 표시된 불균질계 영역은 상계점 하부의 농도에서 유기상과 수상의 2개

화학공학의 이론과 응용 제14권 제1호 2008년

층으로 분리가 일어남을 보여준다. 순수한 에탄올과 물을 생산하기 위해서 서로 다른 농 도분포를 가진 증류탑에서 각각을 생산하여야 하고, 이렇게 증류영역을 구분하기 위하여 제 3의 성분(분리제)을 추가하여 증류영역을 이동하는 방법을 많이 사용하고 있다.

3. 열복합형 농축공정의 해석

기존의 에탄올 농축공정은 증류시스템 설계에서 증류영역 배치의 문제 때문에 설계상 여유가 없어 재순환량 감소에 의한 증류효율 상승의 여지가 많지 않다. 이러한 설계의 여 유 부족은 에탄올/벤젠/물 시스템의 평형곡선에서 단일 증류탑에서 원료조성과 상부제품, 하부제품의 조성이 일직선상에 존재하여야 하는 제약조건 때문이다. 열복합 증류탑의 경 우는 이러한 제약조건이 없기 때문에 보다 다양한 증류시스템 설계가 가능하여 증류효율 이 높은 시스템 설계를 할 수 있다. 본 연구에서는 Fig. 3의 에탄올 농축공정을 제안하며 여기서 공정의 특징을 설명하고자 한다. Fig. 4에 공정의 원료 및 제품의 조성분포를 나 타내었다.

우선 원료에 다량으로 함유된 물을 제거하기 위하여 전 단계에서 물을 먼저 하부제품 B2로 제거하고 세 번째탑 C3에서 에탄올을 B3로 생산하는 구조이다. 여기서 C1과 C2를 각각 전처리탑과 주탑으로 한 열복합 증류시스템으로 구성함으로써 기존의 증류시스템에 비해 증류효율을 상승시킨 에탄올 농축 시스템을 구성하였다.

제안한 증류 시스템의 특징은 S₂가 있기 때문에 F₁과 D₂ 및 B₂가 직선을 이루어야 하 는 제약이 없다. 그러므로 증류시스템의 설계가 보다 유연해질 수 있는 이점이 있다. Fig. 4의 점선에서 F₂가 S₂쪽으로 치우친 것은 레버룰을 고려할 때 유기층의 순환량이 S₂의 양보다 적음을 알 수 있다. 이 때 가능하면 증류영역 경계에 가까울수록 환류량을 줄일 수 있다.

설계 결과는 Table 1에 나타나 있다. 기존공정에서는 F₁의 에탄올 조성이 50.5 mol % 이지만 발효공정에서의 1차 에탄올 제품의 조성이 19 mol %임을 감안하여 본 연구에서 는 후자를 선택하였다. 시스템 설계의 결과 얻어진 증류탑의 구조설계 자료와 운전 자료 가 Table 1에 정리되어 있으며 제품의 유량과 조성이 포함되어져 있다.

4. 결과 및 고찰

제안된 증류 시스템의 설계결과인 Table 1에서 제안된 농축시스템의 증류탑 구조를 알 수 있다. 제안된 증류시스템의 에너지 절감효과를 알아보면 기존 시스템의 경우 3개 의 증류탑에서 모두 21.2 GJ/h의 재비기 에너지를 소요하는 데 반해 제안하는 공정에서 는 17.3 GJ/h의 에너지를 필요로 하기 때문에 약 18 %의 에너지 절감효과를 얻을 수 있 다. 비교에 사용한 기존 증류탑의 에탄올 조성이 50.5 mol % 이지만 본 제안의 증류공정 에서는 발효에 의한 1차 에탄올 제품의 조성인 19 mol %를 사용하였다. 현재 미국에서 만 130개의 바이오 에탄올 공장이 가동되고 있음을 감안하면 에탄올 농축공정에서 18 %의 에너지 절감효과는 전체 소요량으로 계산할 때 상당한 양이다.

열복합 증류시스템의 증류곡선이 평형농도 곡선과 어떤 관계가 있는지를 살펴보면, Fig. 5에서와 같이 증류탑 내 액의 농도 분포가 Fig. 1의 평형농도 곡선과 유사함을 알 수 있다. 그림에서 작은 원이 각단에서의 조성을 나타내며 원료와 제품의 농도도 함께 나타나 있다. 전체적인 원의 분포곡선은 Fig. 1의 여러 곡선들 중 하나와 유사함을 알 수 있다. 그러나 기존의 농축공정은 원료와 제품의 농도가 서로 일직선상에 있어야 하며 증 류탑 내의 농도 분포도 이러한 제약으로부터 크게 벗어날 수 없으므로 Fig. 1의 평형곡 선과는 큰 차이를 보일 수밖에 없다. 즉, 높은 증류탑 효율의 평형곡선과 차이가 있음은 증류효율이 낮음을 의미하며 본 연구의 제안 시스템이 기존의 농축 시스템에 비해 높은 증류효율을 가지는 것을 설명해 준다.

본 연구에서 제안한 구조의 증류시스템은 에탄올 농축공정 뿐 만 아니라 여러 가지

불균질계 증류시스템에도 응용이 가능하며, 특히 에탄올 농축공정에서는 일차 원료의 에 탄올 농도가 낮기 때문에 더 큰 효과를 얻을 수 있다. 제안한 농축 시스템은 일반적인 공비 혼합물의 분리에도 활용할 수 있으며, 이 때 증류영역의 이동을 위한 분리제의 순 환 사용량이 최소가 되도록 분리탑의 원료 조성이 증류영역 경계에 가장 근접하도록 증 류공정을 구성하는 것이 중요하다.

결론

본 연구에서 제안한 시스템은 열복합 증류탑을 활용하여 벤젠을 분리제로 사용한 증류 시 스템으로 기존의 증류시스템에 비해 약 18 %의 에너지 절감효과가 있는 것으로 밝혀졌다. 제 안된 증류 시스템은 원료와 제품의 농도가 증류시스템 농도분포 상에서 일직선을 이루어야 하는 제약을 받지 않기 때문에 증류효율이 높았으며, 또 증류 효율을 최대로 하기 위해서는 증류영역의 경계에 가까운 원료의 조성을 가질 수 있도록 증류탑을 구성하여야 함을 설계지 침으로 제시하였다.

<u> 참고문헌</u>

- [1] Gomis, V., Pedraza, R., Frances, O., Font, A. and Asensi, J. C., "Dehydration of Ethanol Using Azeotropic Distillation with Isooctane," *Ind. Eng. Chem. Res.*, 46(13), 4572-4576(2007).
- [2] Font, A., Asensi, J. C., Ruiz, F. and Gomis, V., "Application of Isooctane to the Dehydration of Ethanol. Design of a Column Sequence to Obtain Absolute Ethanol by Heterogeneous Azeotropic Distillation," *Ind. Eng. Chem. Res.*, 42(1), 140-144(2003).
- [3] Cho, J., Park, J. and Jeon, J. K., "Comparison of Three- and Two-Column Configurations in Ethanol Dehydration Using Azeotropic Distillation," *J. Ind. Eng. Chem.*, **12**(2), 206-215(2006).

Fig.1 Ternary equilibrium diagram of ethanol/benzene/water system.

Fig.2 Compositions of feed and products in an existing ethanol dehydration process.

Fig.3 A process diagram of the proposed ethanol dehydration process.

Fig.4 Compositions of feed and products in the proposed ethanol dehydration process.

Fig.5 Composition profile in the proposed thermally coupled distillation process.

Table 1. Design results of the proposed ethanol dehydration	. process
---	-----------

	C1			C ₂			C ₃		
(Structural)									
Number of trays	15			35			30		
Feed/ Side product	7			17			2		
Interlinking				2, 23					
(Operating)									
Pressure [KPa]	101.3			101.3			101.3		
Top temp.[℃]	78.3			63.32			63.02		
Bottom temp.[°C]	82.09			98.58			78.15		
Reflux [kmol/h]	100			90			82.7		
Feed [kmol/h]	318						182		
Overhead [kmol/h]				0.01			72.45		
Bottom [kmol/h]				258.0			55.39		
Side [kmol/h]				107.0			54.15		
Composition (m.f.)	ethanol / benzene / water			ethanol / benzene / water			ethanol / benzene / water		
Reflux	0.7337	0.0174	0.2489	0.3577	0.5385	0.1038	0.2080	0.6939	0.0098
Feed	0.1895	0.0000	0.8105				0.4939	0.3514	0.1547
Overhead				0.2986	0.5344	0.1670	0.1538	0.8428	0.0034
Bottom				0.0051	0.0000	0.9949	0.9900	0.0000	0.0100
Side				0.7281	0.0112	0.2607	0.4414	0.0532	0.5054
Reboiler Duty[GJ/h]					8.45			8.82	