Clinically important pathogen detection by microarray validated with various clinical isolates

유승민, 장경희¹, 유내춘², 금기창³, 유원민⁴, 김준명¹, 이상엽^{*} KAIST 생명화학공학과; ¹연세대학교 의과대학 감염내과; ²연세대학교 의과대학 암연 구센터; ³연세대학교 의과대학 방사선종양학과; ⁴연세대학교 의과대학 성형외과 (leesy@kaist.ac.kr^{*})

A rapid and precise diagnosis of bacterial infection is important for proper therapy to patients. However, bacterial detection by the traditional method containing cultivation is time consuming and not sensitive enough. DNA microarray-based assay provides more reliable, efficient, reproducible, precise and high throughput detection in a short assay time than current techniques. In this study, we suggest diagnostic microarray for 39 pathogenic bacteria, which selected based on high prevalence and/or difficulty of cultivation. Based on the 23S ribosomal DNA (rDNA) and 16S-23S rDNA intergenic spacer region sequence analysis, the bacteria- and bacterial species-specific probes were designed by considering relations between the probe properties and hybridization efficiency. The probes were microarrayed on the slide glass and the usefulness of these selected probes was confirmed by hybridizing with DNAs from reference bacteria and 515 clinical isolates. Our diagnostic microarray for pathogen showed 97.7% sensitivity, 100% specificity and positive predictive value.

[This work was supported by Medigenes Co., Ltd.]