Highly KOH Resistant Ni–MgO–Al $_2O_3$ Catalyst for Direct Internal Reforming (DIR) in MCFC

<u>노현석</u>, U.D. Joshi¹, 정유식¹, 구기영¹, 정운호¹, 서동주¹, 서용석¹, 윤왕래^{1,*} 연세대학교 환경공학부; ¹한국에너지기술연구원 (wlyoon@kier.re.kr*)

Nano-sized MgO-Al₂O₃ supported Ni catalysts have been designed for direct internal reforming (DIR) in MCFC. Ni-MgO-Al₂O₃ catalysts (Ni content > 50wt%) have been prepared by the co-precipitation method to finely disperse Ni crystallites on the support. NiO crystallite size has been found to be 2 ~ 4 nm, indicating nano-dispersion of NiO. The prepared Ni-MgO-Al₂O₃ catalysts have been poisoned by an appropriate amount of KOH and applied for steam reforming reaction at the same temperature and S/C ratio of MCFC (T = 650°C, H₂O/CH₄ = 3.0). According to the reaction results, Ni-MgO-Al₂O₃ with 10% MgO exhibits the highest KOH resistance among the catalysts tested in this study.