New Regenerable MgO–Based Sorbents Promoted with K_2CO_3 for CO_2 Capture at Low Temperatures

<u>박용희</u>, 이수출, 이수재, 채호진, 권용목, 류청걸¹, 김재창* 경북대학교; ¹학국전력연구원 (kjchang@kun.ac.kr*)

To improve the CO_2 absorption capacity of alkali–based sorbents, CO_2 capture capacities and regeneration properties of sorbents, prepared by impregnation and wet mixing method of potassium carbonate on supports such as activated carbon and MgO (KACI30, KACP30, KMgI30, and KMgP30), were investigated in a fixed bed reactor (CO_2 absorption at 50–100°C and regeneration at 150–400°C). Total CO_2 capture capacities of KMgI30–500 and KMgP30–500 were 178.6 and 197.6 mg CO_2/g sorbent, respectively, in the presence of 11 vol.% H₂O even at 50oC. The large amount of CO_2 capture capacity of KMgP30–500 and KMgI30–500 could be explained by the fact that MgO itself, as well as K₂CO₃, could absorb CO_2 in the presence of water vapor even at low temperatures. In particular, water vapor plays an important role in the CO_2 absorption of MgO and KMgI30–500 even at low temperatures below 60°C, in marked contrast to MgO and CaO which can absorb CO_2 at high temperatures. KMgI sorbents showed excellent characteristics in that it could satisfy a large amount of CO_2 absorption at low temperatures, a high CO_2 absorption rate, and fast and complete regeneration.