Spectroscopic and crystallographic analyses of the binary HPF₆ and CH₄ clathrate hydrate

<u>차종호</u>, 신규철, 최숙정, 설지웅, 연순화, 이 흔* 한국과학기술원 (h_lee@kaist.ac.kr*)

The HPF $_6$ clathrate hydrates possess two intrinsic crystalline structures with the variation of H $_2$ O concentration. The HPF $_6$ •6H $_2$ O hydrate has been found to have the type VII structure, which is composed of 4^66^8 cages fully occupied by PF6 $^-$. On the other hand, HPF $_6$ •7.67H $_2$ O hydrate with sI structure is built by vacant 5^{12} cages and PF $_6$ $^-$ filled $5^{12}6^2$ cages. However, at lower concentration of PF $_6$ $^-$, the HPF $_6$ •17H $_2$ O hydrate, type VII structure does not appear and the hydrate phase maintains sI structure as PF $_6$ $^-$ anion is partially filled with large $5^{12}6^2$ cages of sI hydrate. When CH $_4$ gas molecules are introduced, their structure is also maintained with sI structure. It seems that at high pressure, CH $_4$ gas molecules penetrate to pure hydrate phase and occupy vacant cages without any structural transition. To characterize the hydrates, Raman spectroscopy and X-ray diffractometer are used.