Synthesis of highly active three-dimensional KIT-6 for the selective oxidation of styrene

<u>김상윤</u>, 제르미, 비네시, 박대원* 부산대학교 (dwpark@pusan.co.kr*)

The direct incorporation of vanadium into the three–dimensional (3–D) cubic Ia3d mesostructure designated as V–KIT–6 was prepared and the material obtained therein showed a very high specific surface area 1000 m²/g with tunable pore diameters in narrow distribution of sizes 6.0 nm. The extent of mesopore structural ordering was confirmed from X–ray diffraction, N₂ physisorption, SEM, and TEM analysis. The coordination and nature of V sites in V–KIT–6 are characterized by FT–Raman, UV–visible diffuse reflectance, ⁵¹V–spin–echo NMR and NH₃–TPD analysis. It shows that after calcination, the V⁴⁺ species are totally oxidized to V⁵⁺ state with 4– and 6– coordinated V–O environments in a highly dispersed state with very less crystalline V₂O₅ formation. The calcined V–KIT–6 materials showed excellent catalytic activity in the direct oxidation of styrene using tert–butyl hydroperoxide (TBHP) as an oxidant.