

Screening of Microalgae Isolated from Marine Coastal Waters of Singapore for Production of Biodiesel Feedstock

Associate Professor

Dr. Jeff OBBARD & Probir Das

Division of Environmental Science & Engineering & Tropical Marine Science Institute

Tropical Marine Science Institute

NATIONAL UNIVERSITY OF SINGAPORE

- Officially formed in April 1998 in response to a need for a centre of excellence in tropical marine science
- TMSI's marine research facility on St. John's Island was officially launched in September 2002

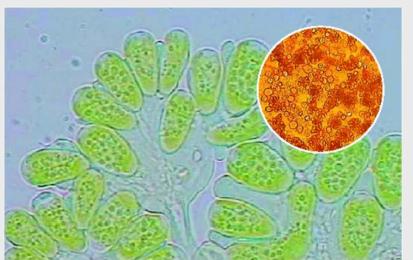
Core research areas are:

- Environmental Sciences: Physical Sciences:
- Biological Sciences

TMSI on St. John's Island

Facilities include

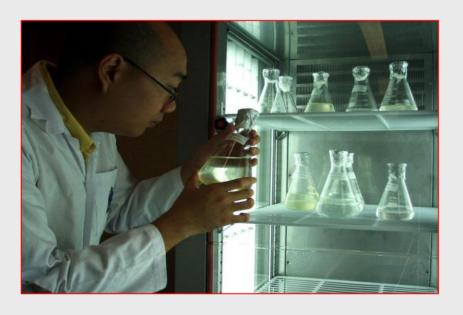
- laboratories (biofuels, analytical chemistry, biology, aquaculture)
- Aquaria; mass algal culture facilities
- Dormitories that can accommodate up to 20 people



Biodiesel from Microalgae

- ➤ Some species of algae are suited to bio-diesel production due to their high oil content (some well over 50 per cent oil), with extremely fast growth rates.
- ➤ The National Renewable Energy Laboratory in the US has performed research on harvesting bio-diesel from algae farms.
- ➤ According to some estimates, the yield (per acre) of oil from algae is over 20 times the yield from the best-performing plant/vegetable oils.

Litres/hectare
375
1,000
1,300
1,590
5,800
95,000 !!


(US National Renewable Energy Lab data)

The algae Botryococcus braunii under magnification, showing many of the natural oil particles in the algal cells. The inset shows the particles under x500 magnification.

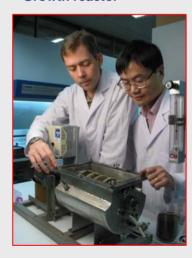
"Working on fast growing tropical species of marine microalgae as an alternative feedstock for biodiesel production"

Research Interests

- Optimization of algae growth and lipid production under phototrophic conditions
- Enhanced algal harvesting and lipid extraction
- ➤ Enhancement of lipid production with the use of metabolic engineering
- ➤ Genetic manipulation of algae to enhance lipid production

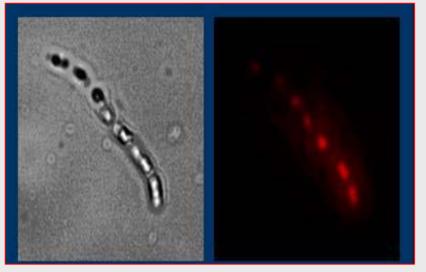
Mass algal culture

Flow cytometer


Fluorescence staining of microalgae

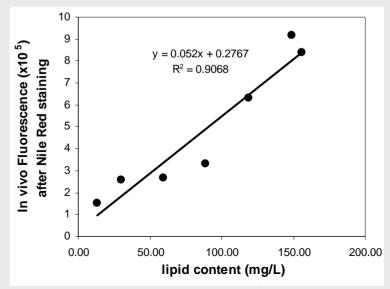
Research Facilities at TMSI

- Mass algal culture suite;
- > Full Microscopy suite;
- Mass seawater flow system (filtered, sterile);
- Fluorescence staining and spectrometry suite;
- Flow cytometry (cell counting and isolation);
- Analytical suite (inc. GCMS-MS and LC MS-MS);
- Photobioreactors;
- Transesterification micro-reactor, rotating biological contactor (for biocatalysis).



Growth reactor

Rotating biological contactor



Bright field microscopy Epifluorescence microscopy



Lipid Characterization

- Total lipid: Gravimetric method
- Neutral lipid: Fluorescence by Nile Red
- Lipid Profile: One step transesterification followed by GC-MS analysis

➤ Ubiquitous in the marine environment, particularly in the waters of Singapore

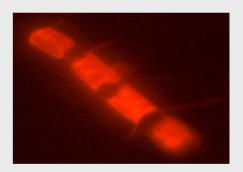
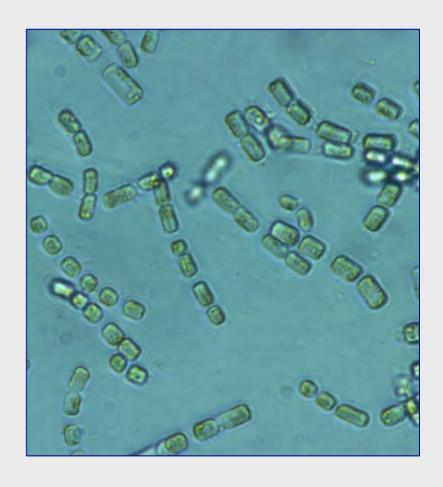
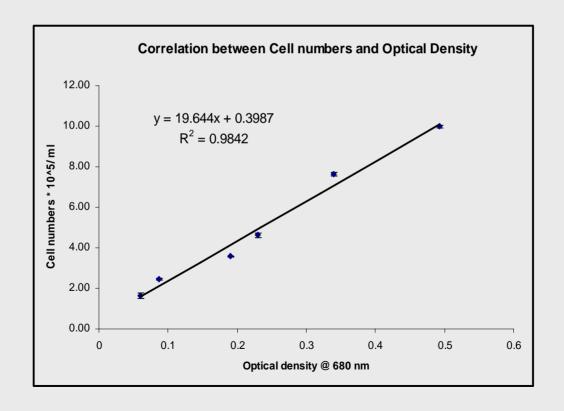


Figure: Photographs of different strains taken after Nile Red staining


Gravimetric lipid content of 10 local microalgae strains

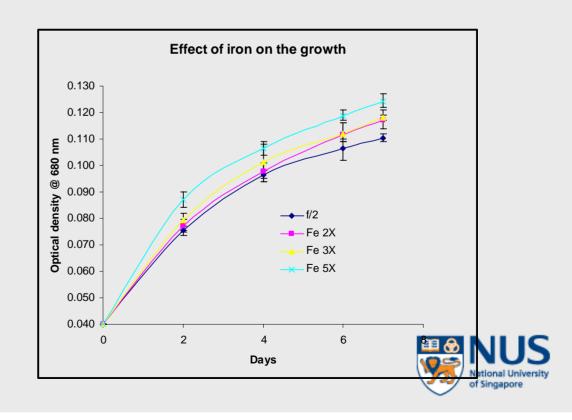
Local strain	Lipid concentration ±SD (mg/L)	Lipid content ± SD (%,w/w dry biomass)
B1 (40)	41.75±2.75	44.52±1.72
1	8.33±1.75	9.49±1.65
4	13.78±4.96	17.79±3.75
5	2.78±2.06	0.17±0.09
18	6.46±2.32	2.65±0.39
19	4.11±6.49	0.31±0.49
30	4.56±0.26	1.58±0.21
34	9.04±0.71	16.27±4.03
35	2.23±1.64	2.22±1.61
37	2.06±0.42	-

Marine Microalgae


Chain-forming (Small cells linked with external tubes)

Optimization of growth rate for Diatom, B1

- Modification of culture parameters was compared w.r.t. f/2 media
- Optical Density of the culture at 680nm was used as an alternative tool to determine cell concentrations.

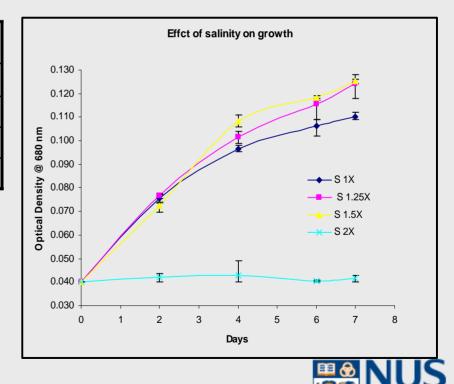


Optimization of diatom B1

Effect of iron

- In f/2 media ferric chloride was used (as 1 x 10⁻⁵ M)
- Effect of iron on the growth rate was studied by increasing the iron concentration of f/2 media by 2X, 3X and 5X times.
- Ferric Citrate was added to balance the iron concentration.

Media	Iron Conc. (M)
f/2	1 x 10 ⁻⁵
Fe 2X	2 x 10 ⁻⁵
Fe 3X	3 x 10 ⁻⁵
Fe 5X	5 x 10 ⁻⁵

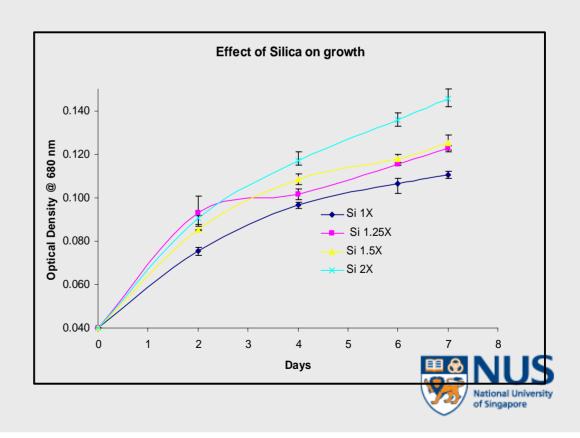

Optimization of diatom B1 cont.

Effect of salinity

- f/2 media was prepared in normal seawater
- Salinity was increased to 1.25X, 1.5X and 2X times of normal seawater and its effect on growth rate was compared with normal seawater.
- Supplemented seawater (Salinity 2X times) was added accordingly to normal seawater to adjust the salinity

Supplemented Seawater		
Chemicals	Amounts (in 1L seawater)	
NaCl	23 gm	
MgCl ₂ .6H ₂ O	5 gm	
Na ₂ SO ₄	4 gm	

Media	Salinity ppt
f/2 or S 1X	33
S 1.25X	41.25
S 1.5X	49.5
S 2X	66



Optimization of diatom B1 cont.

Effects of Silica

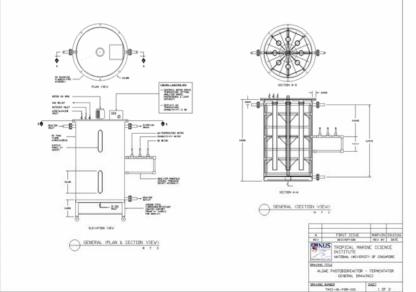
- In f/2 media silica conc. was 1.07 x 10⁻⁴ M
- Silica concentration of f/2 media was increased by 1.25X, 1.5X and 2X times and compared with f/2.
- In all media Sodium Silicate was used to adjust the silica concentration.

Media	Silica Conc. (M)
f/2 or Si 1X	1.07 x 10 ⁻⁴
Si 1.25X	1.34 x 10 ⁻⁴
Si 1.5X	1.60 x 10 ⁻⁴
Si 2X	2.14 x 10 ⁻⁴

Lipid Profile and Quantification

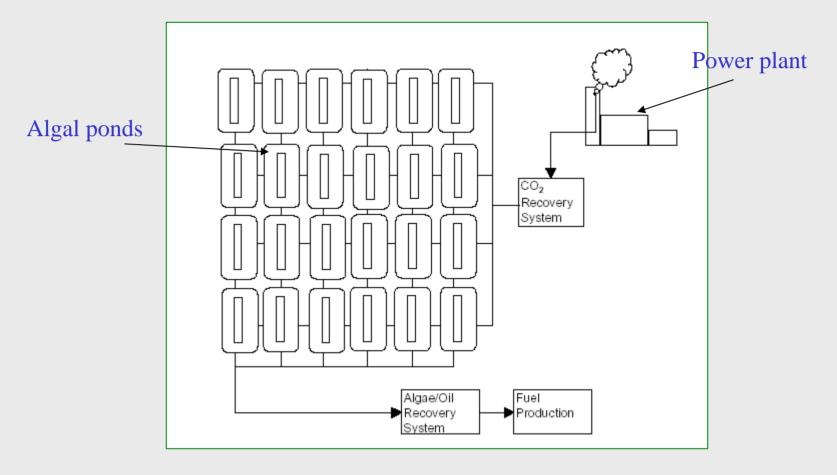
Strain: B1

• Total lipid: 50±2% of dry biomass


• Neutral lipid: 37±3% of dry biomass

FAMES	% of FAMEs
C14:0	10.3
C15:0	0.16
C16:0	33.04
C16:1	36.78
C18:0	0.21
C20 : 5	16.04
Total Unsaturated	52.82
Total Saturated	47.18

Lipid Profile


Algal Mass Culture & Photobioreactors

- Variable parameters (light intensity, temperature, photoperiod, pH, gas flux, rotational speed)
- Designed specifically for optimization of algae growth and increased harvest

Carbon Capture & Sequestration, Biofuels

