Solid Polymer Electrolytes Consisting of amphiphilic PVC-g-POEM Comb-Like Copolymer and LiCF₃SO₃

고주환^{1,2}, 연승현^{1,2}, 노동규^{1,2}, 변수진^{1,2}, 김종학^{1,2,*}
¹연세대학교 화공생명공학과; ²수소·연료전지특성화사업단 (jonghak@yonsei.ac.kr*)

An amphiphilic comb-like copolymer consisting of a poly(vinyl chloride) (PVC) backbone and poly((oxyethylene)₉ methacrylate) (POEM) side chains, PVC-*graft*-

POEM was synthesized via atom transfer radical polymerization. This comb copolymer was complexed with LiCF₃SO₃ to form a solid polymer electrolyte. FT-IR and FT-Raman spectroscopy indicate that lithium salts are dissolved in the ion conducting

POEM domains of microphase-separated graft copolymer up to 10 wt % of salt concentration. Microphase-separated structure of the materials and the selective

interaction of lithium ions with POEM domains were revealed by TEM, WAXS, and DSC. The maximum ionic conductivity of 4.4×10^{-5} S/cm at room temperature was

achieved at 10 wt % of salt concentration, above which salts are present as less mobile species such as ion pairs and higher order ionic aggregates, as characterized by FT-Raman spectroscopy.