Ammonium salt/ion speciation in a ammonia-based carbon dioxide capture process

<u>안치규</u>, 이민우, 이해우, 장용수, 한건우¹, 김제영¹, 박종문* 포항공과대학교; ¹포항산업과학연구원 (impark@postech.ac.kr*)

Ammonia has received special attention as an effective absorbent in CO_2 capture process because of its higher CO_2 absorption capacity and lower chemical cost. In an ammonia–based CO_2 capture process, which usually consists of absorption and regeneration steps, the speciation of salt/ions in the aqueous phase greatly affects the overall process efficiency, especially the energy requirement for NH3 regeneration. In this study, we examined the salt/ions contained in ammonia solution using a ¹³C NMR spectrometry and identified that bicarbonate (HCO₃⁻), carbonate (CO_3^{2-}) and carbamate (NH₂COO⁻) were present in the aqueous phase. During the absorption reaction, NH₂COO⁻ was prevailing at the initial stage however at the end of reaction the HCO₃⁻ was dominant. In the regeneration step, the NH₂COO⁻ is present always higher than CO_3^{2-} and HCO_3^{-} was significantly decreased. Consequently, the ¹³C NMR analysis can be help to understand the reaction of ammonia and CO_2 and optimize the CO_2 capture process.