The Role of Co-catalysts and Surface Junctions Played in Photocatalytic Hydrogen Production

Can Li*

Dalian Institute of Chemical Physics, Chinese Academy of Sciences (canli@dicp.ac.cn*)

In this lecture, we present our recent study on photocatalytic hydrogen production by spectroscopy, such as UV Raman, time-resolved FT-IR and Fluorescence spectroscopy. The activity of photocatalytic H_2 production can be significantly enhanced when small amount of MoS_2 is loaded on CdS as co-catalyst. The junction formed between MoS_2 and CdS and the excellent H_2 activation property of MoS_2 are supposed to be responsible for the enhanced photocatalytic activity of MoS_2/CdS . In addition, Pt-PdS/CdS catalyst demonstrates the possibility of realizing visible-light-responsive photocatalytic hydrogen production with a QE approaching the level of natural photosynthesis. [1] The strategy to achieve high QE by coloading suitable dual cocatalysts, especially those functioning as oxidation and reduction cocatalysts, respectively, will be of considerable importance in the design and preparation of highly active photocatalysts for solar energy conversion.

[1] H. J. Yan, J. H. Yang, G. J. Ma, G. P. Wu, X. Zong, Z. B. Lei, J. Y. Shi and C. Li, J. Catal., 266 (2009)165.