다공성 고분자 전해질의 전기화학적 특성평가

<u>최재원</u>, 안주현*, 신초롱¹, 김종선², 박진우², 안효준², 류호석², 김익환³ 경상대학교 생명화학공학과, IT용 에너지 저장 및 변환연구센터; ¹경상대학교 생명화 학공학과, IT용 에너지 저장 및 변환연구센터; ²경상대학교 나노•신소재공학부, 아이큐브 사업단; ³(주) 삼웅 (jhahn@gnu.kr*)

Polyurethane was synthesized by polyaddition of polytetra methylene ether glycol(PTMEG) and ethylene glycol(EG) with 4,4'-methylenebis(phenyl isocyanate)(MDI) and had been used of DMF as a solvent. Polyurethane solution was prepared by varying the composition of the DMF. And then, that was casted on Teflon sheet. Micro-porous polyurethane films were prepared by phase inversion, and their properties were characterized with Fourier transform infrared spectroscopy(FT-IR) and scanning electron microscope(SEM). Polyurethane polymer electrolytes were prepared by soaking the porous films in 1M LiCF₃SO₃-PC, and investigated ionic conductivity and decomposition voltage. The ionic conductivity of the 30% polyurethane film with LiCF₃SO₃-PC was 1.2×10^{-4} S/cm at room temperature.