High-efficient Photobioreactor Design for Biological CO₂ Fixation Using Microalgae

<u>김철웅</u>, 김성혜, 박상진, 양지원* KAIST (jwyang@kaist.ac.kr*)

 CO_2 reduction and sequestration is the emerging issue all over the world because of global warming. Although Carbon Capture and Storage (CCS) technology is a typical technology of many CO_2 reduction and sequestration technologies, it costs enormous expense because CO_2 should be stored to safe space after captured and recovered from exhaust gas.

However, biological CO_2 fixation process using microalgae is possible to recover CO_2 directly from exhaust gas without additional CO_2 separation process. In addition, biomass from microalgae is available for producing useful materials such as biodiesel and feed additives.

For this process to be more feasible economically, the development of a high-efficient photobioreactor is essential. In this study, we designed a high-efficient photobioreactor for CO_2 fixation and investigated the optimal culture conditions in the photobioreactor.