Butane Steam Reforming on Ag/Ni/MgAl₂O₄ Catalysts

<u>정하림</u>, 강미숙* 영남대학교 (mskang@ynu.ac.kr*)

The intensively coke deposition and reforming at high temperature in the conventional Ni/y-Al₂O₃ catalyst, which resulted in rapidly catalytic deactivation and reducing H₂ production from hydrocarbon steam-reforming reaction under solid oxide fuel cell (SOFC) operating conditions. Steam reforming reactions of butane over bimetallic Ag/Ni or Ni/Ag of same amount loaded MgAl₂O₄ catalysts synthesized by an impregnation approach were studied in this study to improve the mentioned upon. The Ag loaded catalyst on the external surface provided significantly higher reforming reactivity compared to the conventional Ni/MgAl₂O₄. The main products from steam reforming over Ni/MgAl₂O₄ catalyst without Ag component were H2, CO, CO₂, and CH₄ with a small amount of C₂~. However, the addition of Ag was found to reduce the degree of carbon deposition and improve H2 product selectivity by completely eliminating C₂~ formation regardless of below 750°C. The catalytic performances were different according to the impregnating order of added metal precursors in each step: the H₂ production maximally reached to 0.23mol over Ag/Ni/MgAl₂O₄ at 800°C, and however it decreased to 0.13mol at 600°C over Ni/Ag/MgAl₂O₄.