Production of 1,3-butadiene from C₄ raffinate-3 through oxidative dehydrogenation of n-butene over bismuth molybdate catalysts

정지철, 이호원, 이윤재, 송인규* 서울대학교 (inksong@snu.ac.kr*)

A number of bismuth molybdate catalysts, including pure bismuth molybdates (α -Bi₂Mo₃O₁₂, β -Bi₂Mo₂O₉, and γ -Bi₂MoO₆) and multicomponent bismuth molybdates, were prepared by a co-precipitation method for use in the production of 1,3-butadiene from C₄ raffinate-3 through oxidative dehydrogenation of n-butene. Various experimental tools such as TPRO, XPS, and O₂-TPD measurements were carried out to determine the oxygen mobility of bismuth molybdate catalysts. It was revealed that oxygen mobility of bismuth molybdate catalyst played a key role in determining the catalytic performance in the oxidative dehydrogenation of n-butene to 1,3-butadiene (The authors would like to acknowledge funding from the SK Energy Corporation).