Porosity characteristics of mesoporous TiO₂ nanocrystals prepared with neutral surfactants of different chain lengths

<u>신은우</u>*, Thuy-Duong Nguyen-Phan, 김의정 울산대학교 (ewshin@mail.ulsan.ac.kr*)

We prepared mesoporous TiO_2 nanocrystals with neutral surfactants of different chain lengths – dodecylamine (C_{12}) and hexadecylamine (C_{16}). Porosity characteristics of mesoporous TiO_2 nanocrystals were investigated through a nitrogen adsorption-desorption technique, X-ray diffraction, and Fourier transform infrared spectroscopy. Thermal treatments led the changes in porosity of mesoporous TiO_2 nanocrystals, the growth of crystal sizes and even phase transformation. The higher calcination temperature, the larger pore diameters and crystal sizes. The rutile phase of mesoporous TiO_2 appeared as calcined at 873 K. Porosity characteristics exhibited differently due to the effect of surfactant chain length. N₂ adsorption-desorption isotherms indicated that mesoporous TiO_2 nanocrystals using dodecylamine contained a relatively more textural mesoporosity compared to that using hexadecylamine. This result also explained well that the average pore diameter of mesoporous TiO_2 using shorter alkyl chain length was larger than the other case.