Development of a Hybrid Soft Sensor for the Real–Time Monitoring of Ammonium Salts in Ammonia–Based CO_2 Capture Processes

<u>장용수</u>, 임성린, 김유리, 이민우¹, 김제영², 한건우², 안치규², 이해우³, 박종문^{*} 포항공과대학교; ¹계명대학교; ²RIST; ³University of Massachusetts Lowell (jmpark@postech.ac.kr^{*})

Ammonia-based CO_2 capture processes consume energy to regenerate ammonia from ammonium salts. The type and concentration of the salts need to be monitored to prevent excessive consumption in regeneration energy. Thus, real-time monitoring for energy control is beneficial for energy and cost saving. The objective of this study is to develop a hybrid soft sensor to monitor ammonium salts in real time by linking the partial least square (PLS) model as a data-driven model to the vapor-liquid-solid (VLS) model as a thermodynamic model. pH, conductivity and temperature are used as the inputs for the data-driven model whose outputs are subsequently fed into VLS model as constraints. The results of the hybrid soft sensor are correlated at a level of $R^2 > 0.80$ with the results of instrumental analysis. Therefore, the hybrid soft sensor can be used to control regeneration energy and enhance the energy efficiency of ammonia-based processes.

화학공학의 이론과 응용 제16권 제2호 2010년