Thermophilic fermentation hydrogen production from xylose by *Thermotoga neapolitana* DSM 4359 using a 3L–CSABR system

Ngo Anh Tien, 심상준* Dept. of Chemical Engineering, Sungkyunkwan Univ. (simsj@skku.edu*)

Biohydrogen production from xylose by *Thermotoga neapolitana* was investigated in continuously stirred anaerobic bioreactor (CSABR). The highest hydrogen production of 32.1 \pm 1.6 mmol-H₂/L and maximum biomass concentration of 959.63 \pm 47.9 g/L were obtained at initial xylose concentration of 5.0 g/L. To develop a large scale biohydrogen production system as well as overcome the problems in small batch culture, an CSABR was tested on *T. neapolitana* in both pH-uncontrolled batch culture and pH-controlled batch culture. The results showed that the production level of H₂ in a pH-controlled batch culture was much higher than those from a pH-uncontrolled batch culture for H₂ production. In order to study the precise effect of a stable pH on hydrogen production, and metabolite pathway involved, cultures was conducted with pH-controlled at different levels ranging from 6.5 to 7.5. The maximum H₂ yield of 2.8 \pm 0.14 mol-H₂mol⁻¹ xylose_{consumed} was measured while the pH was maintained at 7.0. The acetic acid and lactic acid production were 2.98 \pm 0.15 g/L and 0.36 \pm 0.02 g/L, respectively.