Composite Electrodes of BiVO₄/WO₃ for Photoelectrochemical water splitting

홍석준, 이승옥, 장점석, 이재성* 포항공과대학교 (jlee@postech.ac.kr*)

Heterojunctioned composite semiconductors are an efficient system for electron-hole separation to minimize the energy wasteful electron-hole recombination. In this work we introduce a kind of heterojunctioned composite electrodes for photoelectrochemical (PEC) cell application for enhancement of WO_3 efficiency. We have prepared WO_3 and $BiVO_4$ composite electrode by polymer-assisted deposition. All samples consisted of each layer of WO_3 and $BiVO_4$ and has thickness around $2{\sim}2.5\mu m$. They were calcined at $550{\circ}C$ under air atmosphere. The prepared films were characterized using XRD, SEM, UV-Vis spectra and electrochemical analysis. The photocurrents were measured under AM 1.5G simulated solar light in $0.5M~Na_2SO_4$. In the IPCE data, WO_3 absorbed the light of 500nm due to band gap of 2.7eV. Thus, the onset of IPCE started at 500nm for WO_3 electrode. The BiVO4 could absorb more light of longer wavelengths than WO3 due to band gap of 2.5eV, so that $BiVO_4$ showed photoactivity at 540nm. Yet, its photoactivity for O_2 generation was much lower than that from WO_3 . The WO_3 -BiVO_4 composite electrode show a synergism showing higher activity than WO_3 and $BiVO_4$ combined.