Effect of light scattering TiO₂ particles on the performance of flexible dye sensitized solar cells

이진우, M. Shaheer Akhtar, 박동민, 양오봉* 전북대학교 (obyang@jbnu.ac.kr*)

In this paper, the efficient flexible dye sensitized solar cells (DSSCs) were constructed by using ${\rm TiO_2}$ nanoparticles (P-25) with light scattering ${\rm TiO_2}$ nanoparticles (200-300 nm) based thin film electrodes. The flexible electrodes were prepared by mixing of ${\rm TiO_2}$ nanoparticles and light scattering ${\rm TiO_2}$ particles into the solution of titanium tertaisopropoxide and ethanol and deposited on indium tin oxide Polyethylene Naphthalate (ITO-PEN) substrates. It was found that dye absorption of ${\rm TiO_2}$ increased as increasing the amount of light scattering ${\rm TiO_2}$ particles in ${\rm TiO_2}$ paste. The reasonable high conversion efficiency of 2.25% with ${\rm J_{SC}}$ of 5.4 mA/cm², ${\rm V_{OC}}$ of 0.768 V and FF of 0.54 was obtained with the flexible DSSC fabricated with optimized ${\rm TiO_2}$ coated ITO-PEN electrode. The significant improvement in photovoltaic performance is attributed to efficiently improved dye absorption and light harvesting efficiency via light scattering ${\rm TiO_2}$ particles. The detail morphological, optical, absorption and photovoltaic properties would be discussed.