Synthesis of Nanostructured Cathode Materials for Li-ion Batteries by Mineralization of Peptide Nanofibers

<u>류정기,</u> 김성욱, 장기석, 박찬범* KAIST (parkcb@kaist.ac.kr*)

We report the synthesis of FePO₄ nanotubes by biomimetic mineralization of peptide nanofibers, formed by self-assembly of Fmoc-diphenylalanine. The peptide nanofibers were readily coated with FePO₄ minerals when sequentially treated with aqueous solutions containing transition Fe³⁺ cations and PO₄³⁻ anions. Detailed investigations revealed that peptide nanofibers were mineralized with amorphous hydrated FePO₄. By incubating the peptide/FePO₄ core/shell nanofibers at 350 °C, we could readily fabricate FePO4 nanotubes (average diameter ~20 nm, wall thickness ~5 nm) with inner walls coated with a thin conductive layer of amorphous carbon by carbonization of the peptide core. The novel carbon-coated FePO₄ nanotubes were found to be a promising cathode material for rechargeable Li-ion batteries with a very high and reversible Li charge/discharge capacity (approx. 150 mAh g⁻¹ at a rate of 10 mA g⁻¹) and negligible capacity fading during cycling.