$\begin{array}{l} \mbox{Preparation of N-doped TiO}_2 \ \mbox{Thin Film Deposited by PECVD and Evaluation of Its} \\ \mbox{Photocatalytic Characteristics} \end{array}$

<u>박</u>준^{1,2}, 조명덕^{1,2}, 박유정^{1,2}, 정경운^{1,2}, 송선정², 임경택³, 조동련^{1,2,*} ¹전남대학교 신화학소재공학과; ²BK21 기능성나노신화학소재사업단; ³전남대학교 촉매연구소 (dlcho@chonnam.ac.kr*)

Titanium Dioxide is now being used in practical applications such as self-cleaning, sterilization, deodorizing and air-cleaning. Unfortunately, the relatively large bandgap of TiO_2 (3.2eV for the anatase phase) requires ultraviolet (UV) light for electron-hole separation, which is only 5% of the natural solar light. It is conceived from the literature knowledge that the modification of the band structure is essential to alter the light absorption characteristics of the TiO₂. In this study, N-doped TiO₂ thin film was deposited onto slide glass by PECVD process with TTIP as a precussor, N₂ and O₂ gas as a reactive gas for 4hr at 400°C. The optimal condition of fabricating N-doped TiO₂ thin film was investigated at various Rf discharge power, flow rate.

The chemical state and crystallity of N-doped TiO_2 thin film were examined by XRD and ESCA. Photocatalyst activity of N-doped TiO_2 thin film was investigated by decomposition of acetaldehyde and methylene blue.