Fabricating complex nanofluidic systems with low resolution optical lithography

<u>허윤석</u>*, 박승민¹, 정은정², 정아람², 최인희², 김해진, Harold G. Craighead¹, David Erickson² Division of Materials Science, Korea Basic Science Institute; ¹School of Applied and Engineering Physics, Cornell University; ²Sibley School of Mechanical and Aerospace Engineering, Cornell University (yshuh@kbsi.re.kr*)

Nanofluidic applications, integrated with microfluidics, have immense opportunities for tuning optical properties and manipulating small molecules such as proteins and DNA. Various techniques have been developed to fabricate nanometer-scale channels. Our approach is based on the use of the "roof-collapse" technique which serves to create complex and functional nanofluidic systems, and to easily integrate micro- and nano-channels for biomolecule applications. Our method combines the dimensional range and network complexibility that can be obtained from high end nanofabrication techniques with the simplicity of recently domonstrated non-lithography approaches. As a practical utility of the approach, we here apply the concentration optofluidic SERS chip for biomolecular analysis.