Electrochemical Properties of Activated Carbon Counter Electrode for Dye-Sensitized Solar Cells

<u>박경희</u>*, 조흥관, 왕교, 박아름, 김은미, 구할본 전남대학교 (see0936@chonnam.ac.kr*)

A new carbon electrode was made based on an activated carbon (AC) using TiO_2 binder and compared with a Pt sputtered electrode as the counter electrode of dye-sensitized solar cells. Cyclic voltammetry(CV) and AC impedance spectroscopy were used to investigate electrochemical properties of both AC electrode and Pt electrode. The photocurrent-voltage characteristics were influenced by both the roughness factor and the electrical resistance of the carbon counter electrode. The voltage of the carbon electrode-based DSSC increased by about 50 mV using the carbon counter electrode compared to the Pt counter electrode because of positive shift of the formal potential for iodide/triiodide redox couple. The AC counter electrode has the merit of improving the fill factor and conversion efficiency of DSSC by reducing its internal resistance.

Acknowledgment

This research was financially supported by the Ministry of Education, Science Technology (MEST) and Korea Industrial Technology Foundation (KOTEF) through the Human Resource Training Project for Regional Innovation.